source: flexpart.git/src/get_wetscav.f90 @ 8ee24a5

10.4.1_peseiGFS_025bugfixes+enhancementsdevrelease-10release-10.4.1scaling-bugunivie
Last change on this file since 8ee24a5 was 8ee24a5, checked in by Sabine <sabine.eckhardt@…>, 7 years ago

force releaseheights for bkwd depo runs

  • Property mode set to 100644
File size: 14.1 KB
Line 
1!**********************************************************************
2! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
3! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
4! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
5!                                                                     *
6! This file is part of FLEXPART.                                      *
7!                                                                     *
8! FLEXPART is free software: you can redistribute it and/or modify    *
9! it under the terms of the GNU General Public License as published by*
10! the Free Software Foundation, either version 3 of the License, or   *
11! (at your option) any later version.                                 *
12!                                                                     *
13! FLEXPART is distributed in the hope that it will be useful,         *
14! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
15! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
16! GNU General Public License for more details.                        *
17!                                                                     *
18! You should have received a copy of the GNU General Public License   *
19! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
20!**********************************************************************
21
22subroutine get_wetscav(itime,ltsample,loutnext,jpart,ks,grfraction,inc_count,blc_count,wetscav)
23!                          i      i        i     i   i    o           o          o       o
24!*****************************************************************************
25!                                                                            *
26! Calculation of wet deposition using the concept of scavenging coefficients.*
27! For lack of detailed information, washout and rainout are jointly treated. *
28! It is assumed that precipitation does not occur uniformly within the whole *
29! grid cell, but that only a fraction of the grid cell experiences rainfall. *
30! This fraction is parameterized from total cloud cover and rates of large   *
31! scale and convective precipitation.                                        *
32!                                                                            *
33!    Author: A. Stohl                                                        *
34!                                                                            *
35!    1 December 1996                                                         *
36!                                                                            *
37! Correction by Petra Seibert, Sept 2002:                                    *
38! use centred precipitation data for integration                             *
39! Code may not be correct for decay of deposition!                           *
40!                                                                            *
41!*****************************************************************************
42!                                                                            *
43! Variables:                                                                 *
44! cc [0-1]           total cloud cover                                       *
45! convp [mm/h]       convective precipitation rate                           *
46! grfraction [0-1]   fraction of grid, for which precipitation occurs        *
47! ix,jy              indices of output grid cell for each particle           *
48! itime [s]          actual simulation time [s]                              *
49! jpart              particle index                                          *
50! lfr, cfr           area fraction covered by precipitation for large scale  *
51!                    and convective precipitation (dependent on prec. rate)  *
52! loutnext [s]       time for which gridded deposition is next output        *
53! loutstep [s]       interval at which gridded deposition is output          *
54! lsp [mm/h]         large scale precipitation rate                          *
55! ltsample [s]       interval over which mass is deposited                   *
56! prec [mm/h]        precipitation rate in subgrid, where precipitation occurs*
57! wetdeposit         mass that is wet deposited                              *
58! wetgrid            accumulated deposited mass on output grid               *
59! wetscav            scavenging coefficient                                  *
60!                                                                            *
61! Constants:                                                                 *
62!                                                                            *
63!*****************************************************************************
64
65  use point_mod
66  use par_mod
67  use com_mod
68
69  implicit none
70
71  integer :: jpart,itime,ltsample,loutnext,i,j,ix,jy
72  integer :: ngrid,hz,il,interp_time, n
73  integer(kind=1) :: clouds_v
74  integer :: ks, kp
75  integer :: inc_count, blc_count
76!  integer :: n1,n2, icbot,ictop, indcloud !TEST
77  real :: S_i, act_temp, cl, cle ! in cloud scavenging
78  real :: clouds_h ! cloud height for the specific grid point
79  real :: xtn,ytn,lsp,convp,cc,grfraction(3),prec(3),wetscav,totprec
80  real :: wetdeposit(maxspec),restmass
81  real,parameter :: smallnum = tiny(0.0) ! smallest number that can be handled
82!save lfr,cfr
83
84  real, parameter :: lfr(5) = (/ 0.5,0.65,0.8,0.9,0.95/)
85  real, parameter :: cfr(5) = (/ 0.4,0.55,0.7,0.8,0.9 /)
86
87!ZHG aerosol below-cloud scavenging removal polynomial constants for rain and snow
88  real, parameter :: bclr(6) = (/274.35758, 332839.59273, 226656.57259, 58005.91340, 6588.38582, 0.244984/) !rain (Laakso et al 2003)
89  real, parameter :: bcls(6) = (/22.7, 0.0, 0.0, 1321.0, 381.0, 0.0/) !now (Kyro et al 2009)
90  real :: frac_act, liq_frac, dquer_m
91
92  real    :: Si_dummy, wetscav_dummy
93  logical :: readclouds_this_nest
94
95
96! Determine which nesting level to be used
97!*****************************************
98    ngrid=0
99    do j=numbnests,1,-1
100      if ((xtra1(jpart).gt.xln(j)).and.(xtra1(jpart).lt.xrn(j)).and. &
101           (ytra1(jpart).gt.yln(j)).and.(ytra1(jpart).lt.yrn(j))) then
102        ngrid=j
103        goto 23
104      endif
105    end do
10623  continue
107
108
109! Determine nested grid coordinates
110!**********************************
111    readclouds_this_nest=.false.
112
113    if (ngrid.gt.0) then
114      xtn=(xtra1(jpart)-xln(ngrid))*xresoln(ngrid)
115      ytn=(ytra1(jpart)-yln(ngrid))*yresoln(ngrid)
116      ix=int(xtn)
117      jy=int(ytn)
118      if (readclouds_nest(ngrid)) readclouds_this_nest=.true.
119    else
120      ix=int(xtra1(jpart))
121      jy=int(ytra1(jpart))
122    endif
123
124
125! Interpolate large scale precipitation, convective precipitation and
126! total cloud cover
127! Note that interpolated time refers to itime-0.5*ltsample [PS]
128!********************************************************************
129    interp_time=nint(itime-0.5*ltsample)
130
131    if (ngrid.eq.0) then
132      call interpol_rain(lsprec,convprec,tcc,nxmax,nymax, &
133           1,nx,ny,memind,real(xtra1(jpart)),real(ytra1(jpart)),1, &
134           memtime(1),memtime(2),interp_time,lsp,convp,cc)
135    else
136      call interpol_rain_nests(lsprecn,convprecn,tccn, &
137           nxmaxn,nymaxn,1,maxnests,ngrid,nxn,nyn,memind,xtn,ytn,1, &
138           memtime(1),memtime(2),interp_time,lsp,convp,cc)
139    endif
140
141!  If total precipitation is less than 0.01 mm/h - no scavenging occurs
142    if ((lsp.lt.0.01).and.(convp.lt.0.01)) goto 20
143
144! get the level were the actual particle is in
145    do il=2,nz
146      if (height(il).gt.ztra1(jpart)) then
147        hz=il-1
148!        goto 26
149        exit
150      endif
151    end do
152!26  continue
153
154    n=memind(2)
155    if (abs(memtime(1)-interp_time).lt.abs(memtime(2)-interp_time)) &
156         n=memind(1)
157
158    if (ngrid.eq.0) then
159      clouds_v=clouds(ix,jy,hz,n)
160      clouds_h=cloudsh(ix,jy,n)
161    else
162      clouds_v=cloudsn(ix,jy,hz,n,ngrid)
163      clouds_h=cloudshn(ix,jy,n,ngrid)
164    endif
165
166! if there is no precipitation or the particle is above the clouds no
167! scavenging is done
168
169    if (clouds_v.le.1) goto 20
170
171! 1) Parameterization of the the area fraction of the grid cell where the
172!    precipitation occurs: the absolute limit is the total cloud cover, but
173!    for low precipitation rates, an even smaller fraction of the grid cell
174!    is used. Large scale precipitation occurs over larger areas than
175!    convective precipitation.
176!**************************************************************************
177
178    if (lsp.gt.20.) then
179      i=5
180    else if (lsp.gt.8.) then
181      i=4
182    else if (lsp.gt.3.) then
183      i=3
184    else if (lsp.gt.1.) then
185      i=2
186    else
187      i=1
188    endif
189
190    if (convp.gt.20.) then
191      j=5
192    else if (convp.gt.8.) then
193      j=4
194    else if (convp.gt.3.) then
195      j=3
196    else if (convp.gt.1.) then
197      j=2
198    else
199      j=1
200    endif
201
202
203!ZHG oct 2014 : Calculated for 1) both 2) lsp 3) convp
204! Tentatively differentiate the grfraction for lsp and convp for treating differently the two forms
205! for now they are treated the same
206    grfraction(1)=max(0.05,cc*(lsp*lfr(i)+convp*cfr(j))/(lsp+convp))
207    grfraction(2)=max(0.05,cc*(lfr(i)))
208    grfraction(3)=max(0.05,cc*(cfr(j)))
209
210
211! 2) Computation of precipitation rate in sub-grid cell
212!******************************************************
213    prec(1)=(lsp+convp)/grfraction(1)
214    prec(2)=(lsp)/grfraction(2)
215    prec(3)=(convp)/grfraction(3)
216
217
218! 3) Computation of scavenging coefficients for all species
219!    Computation of wet deposition
220!**********************************************************
221
222      wetdeposit(ks)=0.
223      wetscav=0.   
224
225      if (ngrid.gt.0) then
226        act_temp=ttn(ix,jy,hz,n,ngrid)
227      else
228        act_temp=tt(ix,jy,hz,n)
229      endif
230
231
232!***********************
233! BELOW CLOUD SCAVENGING
234!*********************** 
235      if (clouds_v.ge.4) then !below cloud
236
237! For gas: if positive below-cloud parameters (A or B), and dquer<=0
238!******************************************************************
239        if ((dquer(ks).le.0.).and.(weta_gas(ks).gt.0..or.wetb_gas(ks).gt.0.)) then
240          !        if (weta(ks).gt.0. .or. wetb(ks).gt.0.) then
241          blc_count=blc_count+1
242          wetscav=weta_gas(ks)*prec(1)**wetb_gas(ks)
243
244! For aerosols: if positive below-cloud parameters (Crain/Csnow or B), and dquer>0
245!*********************************************************************************
246        else if ((dquer(ks).gt.0.).and.(crain_aero(ks).gt.0..or.csnow_aero(ks).gt.0.)) then
247          blc_count=blc_count+1
248
249!NIK 17.02.2015
250! For the calculation here particle size needs to be in meter and not um as dquer is
251! changed in readreleases
252! For particles larger than 10 um use the largest size defined in the parameterizations (10um)
253          dquer_m=min(10.,dquer(ks))/1000000. !conversion from um to m
254
255! Rain:
256          if (act_temp .ge. 273. .and. crain_aero(ks).gt.0.)  then
257
258! ZHG 2014 : Particle RAIN scavenging coefficient based on Laakso et al 2003,
259! the below-cloud scavenging (rain efficienty) parameter Crain (=crain_aero) from SPECIES file
260            wetscav=crain_aero(ks)*10**(bclr(1)+(bclr(2)*(log10(dquer_m))**(-4))+ &
261                 & (bclr(3)*(log10(dquer_m))**(-3))+ (bclr(4)*(log10(dquer_m))**(-2))+&
262                 &(bclr(5)*(log10(dquer_m))**(-1))+bclr(6)* (prec(1))**(0.5))
263
264! Snow:
265          elseif (act_temp .lt. 273. .and. csnow_aero(ks).gt.0.)  then
266! ZHG 2014 : Particle SNOW scavenging coefficient based on Kyro et al 2009,
267! the below-cloud scavenging (Snow efficiency) parameter Csnow (=csnow_aero) from SPECIES file
268            wetscav=csnow_aero(ks)*10**(bcls(1)+(bcls(2)*(log10(dquer_m))**(-4))+&
269                 &(bcls(3)*(log10(dquer_m))**(-3))+ (bcls(4)*(log10(dquer_m))**(-2))+&
270                 &(bcls(5)*(log10(dquer_m))**(-1))+ bcls(6)* (prec(1))**(0.5))
271
272          endif
273         
274!             write(*,*) 'bl-cloud, act_temp=',act_temp, ',prec=',prec(1),',wetscav=', wetscav, ', jpart=',jpart
275
276        endif ! gas or particle
277!      endif ! positive below-cloud scavenging parameters given in Species file
278      endif !end BELOW
279
280!********************
281! IN CLOUD SCAVENGING
282!********************
283      if (clouds_v.lt.4) then ! In-cloud
284! NIK 13 may 2015: only do incloud if positive in-cloud scavenging parameters are
285! given in species file, or if gas and positive Henry's constant
286        if ((ccn_aero(ks).gt.0. .or. in_aero(ks).gt.0.).or.(henry(ks).gt.0.and.dquer(ks).le.0)) then
287          inc_count=inc_count+1
288! if negative coefficients (turned off) set to zero for use in equation
289          if (ccn_aero(ks).lt.0.) ccn_aero(ks)=0.
290          if (in_aero(ks).lt.0.) in_aero(ks)=0.
291
292!ZHG 2015 Cloud liquid & ice water (CLWC+CIWC) from ECMWF
293! nested fields
294          if (ngrid.gt.0.and.readclouds_this_nest) then
295            cl=ctwcn(ix,jy,n,ngrid)*(grfraction(1)/cc)
296          else if (ngrid.eq.0.and.readclouds) then
297            cl=ctwc(ix,jy,n)*(grfraction(1)/cc)
298          else                                  !parameterize cloudwater m2/m3
299!ZHG updated parameterization of cloud water to better reproduce the values coming from ECMWF
300            cl=1.6E-6*prec(1)**0.36
301          endif
302
303!ZHG: Calculate the partition between liquid and water phase water.
304          if (act_temp .le. 253.) then
305            liq_frac=0
306          else if (act_temp .ge. 273.) then
307            liq_frac=1
308          else
309            liq_frac =((act_temp-273.)/(273.-253.))**2.
310          end if
311! ZHG: Calculate the aerosol partition based on cloud phase and Ai and Bi
312          frac_act = liq_frac*ccn_aero(ks) +(1-liq_frac)*in_aero(ks)
313
314!ZHG Use the activated fraction and the liqid water to calculate the washout
315
316! AEROSOL
317!********
318          if (dquer(ks).gt.0.) then
319            S_i= frac_act/cl
320
321! GAS
322!****
323          else
324
325            cle=(1-cl)/(henry(ks)*(r_air/3500.)*act_temp)+cl
326!REPLACE to switch old/ new scheme
327          ! S_i=frac_act/cle
328            S_i=1/cle
329          endif ! gas or particle
330
331! scavenging coefficient based on Hertel et al 1995 - using the S_i for either gas or aerosol
332!OLD
333          if ((readclouds.and.ngrid.eq.0).or.(readclouds_this_nest.and.ngrid.gt.0)) then
334            wetscav=incloud_ratio*S_i*(prec(1)/3.6E6)
335          else
336            wetscav=incloud_ratio*S_i*(prec(1)/3.6E6)/clouds_h
337          endif
338        endif ! positive in-cloud scavenging parameters given in Species file
339      endif !incloud
340
34120  continue
342
343end subroutine get_wetscav
Note: See TracBrowser for help on using the repository browser.
hosted by ZAMG