source: flexpart.git/src/advance.f90 @ 7abd262

10.4.1_peseiGFS_025bugfixes+enhancementsdevrelease-10release-10.4.1scaling-bug
Last change on this file since 7abd262 was 7abd262, checked in by Espen Sollum ATMOS <eso@…>, 5 years ago

Changed an error condition in advance.f90

  • Property mode set to 100644
File size: 34.4 KB
Line 
1!**********************************************************************
2! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
3! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
4! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
5!                                                                     *
6! This file is part of FLEXPART.                                      *
7!                                                                     *
8! FLEXPART is free software: you can redistribute it and/or modify    *
9! it under the terms of the GNU General Public License as published by*
10! the Free Software Foundation, either version 3 of the License, or   *
11! (at your option) any later version.                                 *
12!                                                                     *
13! FLEXPART is distributed in the hope that it will be useful,         *
14! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
15! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
16! GNU General Public License for more details.                        *
17!                                                                     *
18! You should have received a copy of the GNU General Public License   *
19! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
20!**********************************************************************
21
22subroutine advance(itime,nrelpoint,ldt,up,vp,wp, &
23       usigold,vsigold,wsigold,nstop,xt,yt,zt,prob,icbt)
24  !                     i    i  i/oi/oi/o
25  !  i/o     i/o     i/o     o  i/oi/oi/o i/o  i/o
26  !*****************************************************************************
27  !                                                                            *
28  !  Calculation of turbulent particle trajectories utilizing a                *
29  !  zero-acceleration scheme, which is corrected by a numerically more        *
30  !  accurate Petterssen scheme whenever possible.                             *
31  !                                                                            *
32  !  Particle positions are read in, incremented, and returned to the calling  *
33  !  program.                                                                  *
34  !                                                                            *
35  !  In different regions of the atmosphere (PBL vs. free troposphere),        *
36  !  different parameters are needed for advection, parameterizing turbulent   *
37  !  velocities, etc. For efficiency, different interpolation routines have    *
38  !  been written for these different cases, with the disadvantage that there  *
39  !  exist several routines doing almost the same. They all share the          *
40  !  included file 'interpol_mod'. The following                               *
41  !  interpolation routines are used:                                          *
42  !                                                                            *
43  !  interpol_all(_nests)     interpolates everything (called inside the PBL)  *
44  !  interpol_misslev(_nests) if a particle moves vertically in the PBL,       *
45  !                           additional parameters are interpolated if it     *
46  !                           crosses a model level                            *
47  !  interpol_wind(_nests)    interpolates the wind and determines the         *
48  !                           standard deviation of the wind (called outside   *
49  !                           PBL) also interpolates potential vorticity       *
50  !  interpol_wind_short(_nests) only interpolates the wind (needed for the    *
51  !                           Petterssen scheme)                               *
52  !  interpol_vdep(_nests)    interpolates deposition velocities               *
53  !                                                                            *
54  !                                                                            *
55  !     Author: A. Stohl                                                       *
56  !                                                                            *
57  !     16 December 1997                                                       *
58  !                                                                            *
59  !  Changes:                                                                  *
60  !                                                                            *
61  !  8 April 2000: Deep convection parameterization                            *
62  !                                                                            *
63  !  May 2002: Petterssen scheme introduced                                    *
64  !                                                                            *
65  !*****************************************************************************
66  !                                                                            *
67  ! Variables:                                                                 *
68  ! icbt               1 if particle not transferred to forbidden state,       *
69  !                    else -1                                                 *
70  ! dawsave            accumulated displacement in along-wind direction        *
71  ! dcwsave            accumulated displacement in cross-wind direction        *
72  ! dxsave             accumulated displacement in longitude                   *
73  ! dysave             accumulated displacement in latitude                    *
74  ! h [m]              Mixing height                                           *
75  ! lwindinterv [s]    time interval between two wind fields                   *
76  ! itime [s]          time at which this subroutine is entered                *
77  ! itimec [s]         actual time, which is incremented in this subroutine    *
78  ! href [m]           height for which dry deposition velocity is calculated  *
79  ! ladvance [s]       Total integration time period                           *
80  ! ldirect            1 forward, -1 backward                                  *
81  ! ldt [s]            Time step for the next integration                      *
82  ! lsynctime [s]      Synchronisation interval of FLEXPART                    *
83  ! ngrid              index which grid is to be used                          *
84  ! nrand              index for a variable to be picked from rannumb          *
85  ! nstop              if > 1 particle has left domain and must be stopped     *
86  ! prob               probability of absorption due to dry deposition         *
87  ! rannumb(maxrand)   normally distributed random variables                   *
88  ! rhoa               air density                                             *
89  ! rhograd            vertical gradient of the air density                    *
90  ! up,vp,wp           random velocities due to turbulence (along wind, cross  *
91  !                    wind, vertical wind                                     *
92  ! usig,vsig,wsig     mesoscale wind fluctuations                             *
93  ! usigold,vsigold,wsigold  like usig, etc., but for the last time step       *
94  ! vdepo              Deposition velocities for all species                   *
95  ! xt,yt,zt           Particle position                                       *
96  !                                                                            *
97  !*****************************************************************************
98
99  use point_mod
100  use par_mod
101  use com_mod
102  use interpol_mod
103  use hanna_mod
104  use cmapf_mod
105  use random_mod, only: ran3
106
107  implicit none
108
109  real(kind=dp) :: xt,yt
110  real :: zt,xts,yts,weight
111  integer :: itime,itimec,nstop,ldt,i,j,k,nrand,loop,memindnext,mind
112  integer :: ngr,nix,njy,ks,nsp,nrelpoint
113  real :: dz,dz1,dz2,xlon,ylat,xpol,ypol,gridsize
114  real :: ru,rv,rw,dt,ux,vy,cosfact,xtn,ytn,tropop
115  real :: prob(maxspec),up,vp,wp,dxsave,dysave,dawsave
116  real :: dcwsave
117  real :: usigold,vsigold,wsigold,r,rs
118  real :: uold,vold,wold,vdepo(maxspec)
119  real :: h1(2)
120  !real uprof(nzmax),vprof(nzmax),wprof(nzmax)
121  !real usigprof(nzmax),vsigprof(nzmax),wsigprof(nzmax)
122  !real rhoprof(nzmax),rhogradprof(nzmax)
123  real :: rhoa,rhograd,delz,dtf,rhoaux,dtftlw,uxscale,wpscale
124  integer(kind=2) :: icbt
125  real,parameter :: eps=nxmax/3.e5,eps2=1.e-9,eps3=tiny(1.0)
126  real :: ptot_lhh,Q_lhh,phi_lhh,ath,bth !modified by mc
127  real :: old_wp_buf,dcas,dcas1,del_test !added by mc
128  integer :: i_well,jj,flagrein !test well mixed: modified by mc
129
130
131  !!! CHANGE: TEST OF THE WELL-MIXED CRITERION
132  !  integer,parameter :: iclass=10
133  !  real(kind=dp) :: zacc,tacc,t(iclass),th(0:iclass),hsave
134  !  logical dump
135  !  save zacc,tacc,t,th,hsave,dump
136  !!! CHANGE
137
138  integer :: idummy = -7
139  real    :: settling = 0.
140
141
142  !!! CHANGE: TEST OF THE WELL-MIXED CRITERION
143  !if (idummy.eq.-7) then
144  !open(550,file='WELLMIXEDTEST')
145  !do 17 i=0,iclass
146  !7      th(i)=real(i)/real(iclass)
147  !endif
148  !!! CHANGE
149
150
151  nstop=0
152  do i=1,nmixz
153    indzindicator(i)=.true.
154  end do
155
156
157  if (DRYDEP) then    ! reset probability for deposition
158    do ks=1,nspec
159      depoindicator(ks)=.true.
160      prob(ks)=0.
161    end do
162  endif
163
164  dxsave=0.           ! reset position displacements
165  dysave=0.           ! due to mean wind
166  dawsave=0.          ! and turbulent wind
167  dcwsave=0.
168
169  itimec=itime
170
171  nrand=int(ran3(idummy)*real(maxrand-1))+1
172
173
174  ! Determine whether lat/long grid or polarstereographic projection
175  ! is to be used
176  ! Furthermore, determine which nesting level to be used
177  !*****************************************************************
178
179  if (nglobal.and.(yt.gt.switchnorthg)) then
180    ngrid=-1
181  else if (sglobal.and.(yt.lt.switchsouthg)) then
182    ngrid=-2
183  else
184    ngrid=0
185    do j=numbnests,1,-1
186      if ((xt.gt.xln(j)+eps).and.(xt.lt.xrn(j)-eps).and. &
187           (yt.gt.yln(j)+eps).and.(yt.lt.yrn(j)-eps)) then
188        ngrid=j
189        goto 23
190      endif
191    end do
19223   continue
193  endif
194
195
196  !***************************
197  ! Interpolate necessary data
198  !***************************
199
200  if (abs(itime-memtime(1)).lt.abs(itime-memtime(2))) then
201    memindnext=1
202  else
203    memindnext=2
204  endif
205
206  ! Determine nested grid coordinates
207  !**********************************
208
209  if (ngrid.gt.0) then
210    xtn=(xt-xln(ngrid))*xresoln(ngrid)
211    ytn=(yt-yln(ngrid))*yresoln(ngrid)
212    ix=int(xtn)
213    jy=int(ytn)
214    nix=nint(xtn)
215    njy=nint(ytn)
216  else
217    ix=int(xt)
218    jy=int(yt)
219    nix=nint(xt)
220    njy=nint(yt)
221  endif
222  ixp=ix+1
223  jyp=jy+1
224
225
226 ! Determine the lower left corner and its distance to the current position
227  !*************************************************************************
228
229  ddx=xt-real(ix)
230  ddy=yt-real(jy)
231  rddx=1.-ddx
232  rddy=1.-ddy
233  p1=rddx*rddy
234  p2=ddx*rddy
235  p3=rddx*ddy
236  p4=ddx*ddy
237
238 ! Calculate variables for time interpolation
239  !*******************************************
240
241  dt1=real(itime-memtime(1))
242  dt2=real(memtime(2)-itime)
243  dtt=1./(dt1+dt2)
244
245! eso: Temporary fix for particle exactly at north pole
246  if (jyp >= nymax) then
247    ! write(*,*) 'WARNING: advance.f90 jyp >= nymax. xt,yt:',xt,yt
248    jyp=jyp-1
249  end if
250
251  ! Compute maximum mixing height around particle position
252  !*******************************************************
253
254  h=0.
255  if (ngrid.le.0) then
256    do k=1,2
257       mind=memind(k) ! eso: compatibility with 3-field version
258       if (interpolhmix) then
259             h1(k)=p1*hmix(ix ,jy ,1,mind) &
260                 + p2*hmix(ixp,jy ,1,mind) &
261                 + p3*hmix(ix ,jyp,1,mind) &
262                 + p4*hmix(ixp,jyp,1,mind)
263        else
264          do j=jy,jyp
265            do i=ix,ixp
266               if (hmix(i,j,1,mind).gt.h) h=hmix(i,j,1,mind)
267            end do
268          end do
269        endif
270    end do
271    tropop=tropopause(nix,njy,1,1)
272  else
273    do k=1,2
274      mind=memind(k)
275      do j=jy,jyp
276        do i=ix,ixp
277          if (hmixn(i,j,1,mind,ngrid).gt.h) h=hmixn(i,j,1,mind,ngrid)
278        end do
279      end do
280    end do
281    tropop=tropopausen(nix,njy,1,1,ngrid)
282  endif
283
284  if (interpolhmix) h=(h1(1)*dt2+h1(2)*dt1)*dtt
285  zeta=zt/h
286
287
288
289  !*************************************************************
290  ! If particle is in the PBL, interpolate once and then make a
291  ! time loop until end of interval is reached
292  !*************************************************************
293
294  if (zeta.le.1.) then
295
296  ! BEGIN TIME LOOP
297  !================
298
299    loop=0
300100   loop=loop+1
301      if (method.eq.1) then
302        ldt=min(ldt,abs(lsynctime-itimec+itime))
303        itimec=itimec+ldt*ldirect
304      else
305        ldt=abs(lsynctime)
306        itimec=itime+lsynctime
307      endif
308      dt=real(ldt)
309
310      zeta=zt/h
311
312
313      if (loop.eq.1) then
314        if (ngrid.le.0) then
315          xts=real(xt)
316          yts=real(yt)
317          call interpol_all(itime,xts,yts,zt)
318        else
319          call interpol_all_nests(itime,xtn,ytn,zt)
320        endif
321
322      else
323
324
325  ! Determine the level below the current position for u,v,rho
326  !***********************************************************
327
328        do i=2,nz
329          if (height(i).gt.zt) then
330            indz=i-1
331            indzp=i
332            goto 6
333          endif
334        end do
3356       continue
336
337  ! If one of the levels necessary is not yet available,
338  ! calculate it
339  !*****************************************************
340
341        do i=indz,indzp
342          if (indzindicator(i)) then
343            if (ngrid.le.0) then
344              call interpol_misslev(i)
345            else
346              call interpol_misslev_nests(i)
347            endif
348          endif
349        end do
350      endif
351
352
353  ! Vertical interpolation of u,v,w,rho and drhodz
354  !***********************************************
355
356  ! Vertical distance to the level below and above current position
357  ! both in terms of (u,v) and (w) fields
358  !****************************************************************
359
360      dz=1./(height(indzp)-height(indz))
361      dz1=(zt-height(indz))*dz
362      dz2=(height(indzp)-zt)*dz
363
364      u=dz1*uprof(indzp)+dz2*uprof(indz)
365      v=dz1*vprof(indzp)+dz2*vprof(indz)
366      w=dz1*wprof(indzp)+dz2*wprof(indz)
367      rhoa=dz1*rhoprof(indzp)+dz2*rhoprof(indz)
368      rhograd=dz1*rhogradprof(indzp)+dz2*rhogradprof(indz)
369
370
371  ! Compute the turbulent disturbances
372  ! Determine the sigmas and the timescales
373  !****************************************
374
375      if (turbswitch) then
376        call hanna(zt)
377      else
378        call hanna1(zt)
379      endif
380
381
382  !*****************************************
383  ! Determine the new diffusivity velocities
384  !*****************************************
385
386  ! Horizontal components
387  !**********************
388
389      if (nrand+1.gt.maxrand) nrand=1
390      if (dt/tlu.lt..5) then
391        up=(1.-dt/tlu)*up+rannumb(nrand)*sigu*sqrt(2.*dt/tlu)
392      else
393        ru=exp(-dt/tlu)
394        up=ru*up+rannumb(nrand)*sigu*sqrt(1.-ru**2)
395      endif
396      if (dt/tlv.lt..5) then
397        vp=(1.-dt/tlv)*vp+rannumb(nrand+1)*sigv*sqrt(2.*dt/tlv)
398      else
399        rv=exp(-dt/tlv)
400        vp=rv*vp+rannumb(nrand+1)*sigv*sqrt(1.-rv**2)
401      endif
402      nrand=nrand+2
403
404
405      if (nrand+ifine.gt.maxrand) nrand=1
406      rhoaux=rhograd/rhoa
407      dtf=dt*fine
408
409      dtftlw=dtf/tlw
410
411  ! Loop over ifine short time steps for vertical component
412  !********************************************************
413
414      do i=1,ifine
415
416  ! Determine the drift velocity and density correction velocity
417  !*************************************************************
418
419        if (turbswitch) then
420          if (dtftlw.lt..5) then
421  !*************************************************************
422  !************** CBL options added by mc see routine cblf90 ***
423            if (cblflag.eq.1) then  !modified by mc
424              if (-h/ol.gt.5) then  !modified by mc
425              !if (ol.lt.0.) then   !modified by mc 
426              !if (ol.gt.0.) then   !modified by mc : for test
427                  !print  *,zt,wp,ath,bth,tlw,dtf,'prima'
428                  flagrein=0
429                  nrand=nrand+1
430                  old_wp_buf=wp
431                  call cbl(wp,zt,ust,wst,h,rhoa,rhograd,sigw,dsigwdz,tlw,ptot_lhh,Q_lhh,phi_lhh,ath,bth,ol,flagrein) !inside the routine for inverse time
432                  wp=(wp+ath*dtf+bth*rannumb(nrand)*sqrt(dtf))*real(icbt)
433                  ! wp=(wp+ath*dtf+bth*gasdev2(mydum)*sqrt(dtf))*real(icbt)
434                  delz=wp*dtf
435                  if (flagrein.eq.1) then
436                      call re_initialize_particle(zt,ust,wst,h,sigw,old_wp_buf,nrand,ol)
437                      wp=old_wp_buf
438                      delz=wp*dtf
439                      nan_count=nan_count+1
440                  end if
441                  !print  *,zt,wp,ath,bth,tlw,dtf,rannumb(nrand+i),icbt
442                  !pause                 
443              else
444                  nrand=nrand+1
445                  old_wp_buf=wp
446                  ath=-wp/tlw+sigw*dsigwdz+wp*wp/sigw*dsigwdz+sigw*sigw/rhoa*rhograd  !1-note for inverse time should be -wp/tlw*ldirect+... calculated for wp=-wp
447                                                                                      !2-but since ldirect =-1 for inverse time and this must be calculated for (-wp) and
448                                                                                      !3-the gaussian pdf is symmetric (i.e. pdf(w)=pdf(-w) ldirect can be discarded
449                  bth=sigw*rannumb(nrand)*sqrt(2.*dtftlw)
450                  wp=(wp+ath*dtf+bth)*real(icbt) 
451                  delz=wp*dtf
452                  del_test=(1.-wp)/wp !catch infinity value
453                  if (isnan(wp).or.isnan(del_test)) then
454                      nrand=nrand+1                     
455                      wp=sigw*rannumb(nrand)
456                      delz=wp*dtf
457                      nan_count2=nan_count2+1
458                      !print *,'NaN coutner equal to:', nan_count,'reduce ifine if this number became a non-negligible fraction of the particle number'
459                  end if 
460              end if
461  !******************** END CBL option *******************************           
462  !*******************************************************************           
463            else
464                 wp=((1.-dtftlw)*wp+rannumb(nrand+i)*sqrt(2.*dtftlw) &
465                 +dtf*(dsigwdz+rhoaux*sigw))*real(icbt)
466                 delz=wp*sigw*dtf
467            end if
468          else
469            rw=exp(-dtftlw)
470            wp=(rw*wp+rannumb(nrand+i)*sqrt(1.-rw**2) &
471                 +tlw*(1.-rw)*(dsigwdz+rhoaux*sigw))*real(icbt)
472            delz=wp*sigw*dtf
473          endif
474         
475        else
476          rw=exp(-dtftlw)
477          wp=(rw*wp+rannumb(nrand+i)*sqrt(1.-rw**2)*sigw &
478               +tlw*(1.-rw)*(dsigw2dz+rhoaux*sigw**2))*real(icbt)
479          delz=wp*dtf
480        endif
481
482        if (turboff) then
483!sec switch off turbulence
484          up=0.0
485          vp=0.0
486          wp=0.0
487          delz=0.
488        endif
489
490  !****************************************************
491  ! Compute turbulent vertical displacement of particle
492  !****************************************************
493
494        if (abs(delz).gt.h) delz=mod(delz,h)
495
496  ! Determine if particle transfers to a "forbidden state" below the ground
497  ! or above the mixing height
498  !************************************************************************
499
500        if (delz.lt.-zt) then         ! reflection at ground
501          icbt=-1
502          zt=-zt-delz
503        else if (delz.gt.(h-zt)) then ! reflection at h
504          icbt=-1
505          zt=-zt-delz+2.*h
506        else                         ! no reflection
507          icbt=1
508          zt=zt+delz
509        endif
510
511        if (i.ne.ifine) then
512          zeta=zt/h
513          call hanna_short(zt)
514        endif
515
516      end do
517      if (cblflag.ne.1) nrand=nrand+i
518
519  ! Determine time step for next integration
520  !*****************************************
521
522      if (turbswitch) then
523        ldt=int(min(tlw,h/max(2.*abs(wp*sigw),1.e-5), &
524             0.5/abs(dsigwdz))*ctl)
525      else
526        ldt=int(min(tlw,h/max(2.*abs(wp),1.e-5))*ctl)
527      endif
528      ldt=max(ldt,mintime)
529
530
531  ! If particle represents only a single species, add gravitational settling
532  ! velocity. The settling velocity is zero for gases, or if particle
533  ! represents more than one species
534  !*************************************************************************
535
536      if (mdomainfill.eq.0) then
537        if (lsettling) then
538          do nsp=1,nspec
539            if (xmass(nrelpoint,nsp).gt.eps3) exit
540          end do
541          if (nsp.gt.nspec) then
542            nsp=nspec
543          end if
544          if (density(nsp).gt.0.) then
545            call get_settling(itime,real(xt),real(yt),zt,nsp,settling)  !bugfix
546            w=w+settling
547          end if
548        end if
549      endif
550
551  ! Horizontal displacements during time step dt are small real values compared
552  ! to the position; adding the two, would result in large numerical errors.
553  ! Thus, displacements are accumulated during lsynctime and are added to the
554  ! position at the end
555  !****************************************************************************
556
557      dxsave=dxsave+u*dt
558      dysave=dysave+v*dt
559      dawsave=dawsave+up*dt
560      dcwsave=dcwsave+vp*dt
561      zt=zt+w*dt*real(ldirect)
562
563      ! HSO/AL: Particle managed to go over highest level -> interpolation error in goto 700
564      !          alias interpol_wind (division by zero)
565      if (zt.ge.height(nz)) zt=height(nz)-100.*eps
566
567      if (zt.gt.h) then
568        if (itimec.eq.itime+lsynctime) goto 99
569        goto 700    ! complete the current interval above PBL
570      endif
571
572
573  !!! CHANGE: TEST OF THE WELL-MIXED CRITERION
574  !!! These lines may be switched on to test the well-mixed criterion
575  !if (zt.le.h) then
576  !  zacc=zacc+zt/h*dt
577  !  hsave=hsave+h*dt
578  !  tacc=tacc+dt
579  !  do 67 i=1,iclass
580  !    if ((zt/h.gt.th(i-1)).and.(zt/h.le.th(i)))
581  !    +    t(i)=t(i)+dt
582  !7        continue
583  !endif
584  !if ((mod(itime,10800).eq.0).and.dump) then
585  ! dump=.false.
586  ! write(550,'(i6,12f10.3)') itime,hsave/tacc,zacc/tacc,
587  !    + (t(i)/tacc*real(iclass),i=1,iclass)
588  !  zacc=0.
589  !  tacc=0.
590  !  do 68 i=1,iclass
591  !8        t(i)=0.
592  !  hsave=0.
593  !endif
594  !if (mod(itime,10800).ne.0) dump=.true.
595  !!! CHANGE
596     
597  ! Determine probability of deposition
598  !************************************
599
600      if ((DRYDEP).and.(zt.lt.2.*href)) then
601        do ks=1,nspec
602          if (DRYDEPSPEC(ks)) then
603            if (depoindicator(ks)) then
604              if (ngrid.le.0) then
605                call interpol_vdep(ks,vdepo(ks))
606              else
607                call interpol_vdep_nests(ks,vdepo(ks))
608              endif
609            endif
610  ! correction by Petra Seibert, 10 April 2001
611  !   this formulation means that prob(n) = 1 - f(0)*...*f(n)
612  !   where f(n) is the exponential term
613               prob(ks)=1.+(prob(ks)-1.)* &
614                    exp(-vdepo(ks)*abs(dt)/(2.*href))
615          endif
616        end do
617      endif
618
619      if (zt.lt.0.) zt=min(h-eps2,-1.*zt)    ! if particle below ground -> reflection
620
621      if (itimec.eq.(itime+lsynctime)) then
622        usig=0.5*(usigprof(indzp)+usigprof(indz))
623        vsig=0.5*(vsigprof(indzp)+vsigprof(indz))
624        wsig=0.5*(wsigprof(indzp)+wsigprof(indz))
625        goto 99  ! finished
626      endif
627      goto 100
628
629  ! END TIME LOOP
630  !==============
631
632
633  endif
634
635
636
637  !**********************************************************
638  ! For all particles that are outside the PBL, make a single
639  ! time step. Only horizontal turbulent disturbances are
640  ! calculated. Vertical disturbances are reset.
641  !**********************************************************
642
643
644  ! Interpolate the wind
645  !*********************
646
647700   continue
648  if (ngrid.le.0) then
649    xts=real(xt)
650    yts=real(yt)
651    call interpol_wind(itime,xts,yts,zt)
652  else
653    call interpol_wind_nests(itime,xtn,ytn,zt)
654  endif
655
656
657  ! Compute everything for above the PBL
658
659  ! Assume constant, uncorrelated, turbulent perturbations
660  ! In the stratosphere, use a small vertical diffusivity d_strat,
661  ! in the troposphere, use a larger horizontal diffusivity d_trop.
662  ! Turbulent velocity scales are determined based on sqrt(d_trop/dt)
663  !******************************************************************
664
665  ldt=abs(lsynctime-itimec+itime)
666  dt=real(ldt)
667
668  if (zt.lt.tropop) then  ! in the troposphere
669    uxscale=sqrt(2.*d_trop/dt)
670    if (nrand+1.gt.maxrand) nrand=1
671    ux=rannumb(nrand)*uxscale
672    vy=rannumb(nrand+1)*uxscale
673    nrand=nrand+2
674    wp=0.
675  else if (zt.lt.tropop+1000.) then     ! just above the tropopause: make transition
676    weight=(zt-tropop)/1000.
677    uxscale=sqrt(2.*d_trop/dt*(1.-weight))
678    if (nrand+2.gt.maxrand) nrand=1
679    ux=rannumb(nrand)*uxscale
680    vy=rannumb(nrand+1)*uxscale
681    wpscale=sqrt(2.*d_strat/dt*weight)
682    wp=rannumb(nrand+2)*wpscale+d_strat/1000.
683    nrand=nrand+3
684  else                 ! in the stratosphere
685    if (nrand.gt.maxrand) nrand=1
686    ux=0.
687    vy=0.
688    wpscale=sqrt(2.*d_strat/dt)
689    wp=rannumb(nrand)*wpscale
690    nrand=nrand+1
691  endif
692
693  if (turboff) then
694!sec switch off turbulence
695    ux=0.0
696    vy=0.0
697    wp=0.0
698  endif
699
700  ! If particle represents only a single species, add gravitational settling
701  ! velocity. The settling velocity is zero for gases
702  !*************************************************************************
703
704  if (mdomainfill.eq.0) then
705    if (lsettling) then
706      do nsp=1,nspec
707        if (xmass(nrelpoint,nsp).gt.eps3) exit
708      end do
709      if (nsp.gt.nspec) then
710        nsp=nspec
711      end if
712      if (density(nsp).gt.0.) then
713        call get_settling(itime,real(xt),real(yt),zt,nsp,settling)  !bugfix
714        w=w+settling
715      end if
716    endif
717  end if
718
719
720  ! Calculate position at time step itime+lsynctime
721  !************************************************
722
723  dxsave=dxsave+(u+ux)*dt
724  dysave=dysave+(v+vy)*dt
725  zt=zt+(w+wp)*dt*real(ldirect)
726  if (zt.lt.0.) zt=min(h-eps2,-1.*zt)    ! if particle below ground -> reflection
727
72899   continue
729
730
731
732  !****************************************************************
733  ! Add mesoscale random disturbances
734  ! This is done only once for the whole lsynctime interval to save
735  ! computation time
736  !****************************************************************
737
738
739  ! Mesoscale wind velocity fluctuations are obtained by scaling
740  ! with the standard deviation of the grid-scale winds surrounding
741  ! the particle location, multiplied by a factor turbmesoscale.
742  ! The autocorrelation time constant is taken as half the
743  ! time interval between wind fields
744  !****************************************************************
745
746  r=exp(-2.*real(abs(lsynctime))/real(lwindinterv))
747  rs=sqrt(1.-r**2)
748  if (nrand+2.gt.maxrand) nrand=1
749  usigold=r*usigold+rs*rannumb(nrand)*usig*turbmesoscale
750  vsigold=r*vsigold+rs*rannumb(nrand+1)*vsig*turbmesoscale
751  wsigold=r*wsigold+rs*rannumb(nrand+2)*wsig*turbmesoscale
752
753  dxsave=dxsave+usigold*real(lsynctime)
754  dysave=dysave+vsigold*real(lsynctime)
755
756  zt=zt+wsigold*real(lsynctime)
757  if (zt.lt.0.) zt=-1.*zt    ! if particle below ground -> refletion
758
759  !*************************************************************
760  ! Transform along and cross wind components to xy coordinates,
761  ! add them to u and v, transform u,v to grid units/second
762  ! and calculate new position
763  !*************************************************************
764
765  call windalign(dxsave,dysave,dawsave,dcwsave,ux,vy)
766  dxsave=dxsave+ux   ! comment by mc: comment this line to stop the particles horizontally for test reasons
767  dysave=dysave+vy
768  if (ngrid.ge.0) then
769    cosfact=dxconst/cos((yt*dy+ylat0)*pi180)
770    xt=xt+real(dxsave*cosfact*real(ldirect),kind=dp)
771    yt=yt+real(dysave*dyconst*real(ldirect),kind=dp)
772  else if (ngrid.eq.-1) then      ! around north pole
773    xlon=xlon0+xt*dx                                !comment by mc: compute old particle position
774    ylat=ylat0+yt*dy
775    call cll2xy(northpolemap,ylat,xlon,xpol,ypol)   !convert old particle position in polar stereographic
776    gridsize=1000.*cgszll(northpolemap,ylat,xlon)   !calculate size in m of grid element in polar stereographic coordinate
777    dxsave=dxsave/gridsize                          !increment from meter to grdi unit
778    dysave=dysave/gridsize
779    xpol=xpol+dxsave*real(ldirect)                  !position in grid unit polar stereographic
780    ypol=ypol+dysave*real(ldirect)
781    call cxy2ll(northpolemap,xpol,ypol,ylat,xlon)  !convert to lat long coordinate
782    xt=(xlon-xlon0)/dx                             !convert to grid units in lat long coordinate, comment by mc
783    yt=(ylat-ylat0)/dy
784  else if (ngrid.eq.-2) then    ! around south pole
785    xlon=xlon0+xt*dx
786    ylat=ylat0+yt*dy
787    call cll2xy(southpolemap,ylat,xlon,xpol,ypol)
788    gridsize=1000.*cgszll(southpolemap,ylat,xlon)
789    dxsave=dxsave/gridsize
790    dysave=dysave/gridsize
791    xpol=xpol+dxsave*real(ldirect)
792    ypol=ypol+dysave*real(ldirect)
793    call cxy2ll(southpolemap,xpol,ypol,ylat,xlon)
794    xt=(xlon-xlon0)/dx
795    yt=(ylat-ylat0)/dy
796  endif
797
798
799  ! If global data are available, use cyclic boundary condition
800  !************************************************************
801
802  if (xglobal) then
803    if (xt.ge.real(nxmin1)) xt=xt-real(nxmin1)
804    if (xt.lt.0.) xt=xt+real(nxmin1)
805    if (xt.le.eps) xt=eps
806    if (abs(xt-real(nxmin1)).le.eps) xt=real(nxmin1)-eps
807  endif
808
809  ! HSO/AL: Prevent particles from disappearing at the pole
810  !******************************************************************
811
812  if ( yt.lt.0. ) then
813    xt=mod(xt+180.,360.)
814    yt=-yt
815  else if ( yt.gt.real(nymin1) ) then
816    xt=mod(xt+180.,360.)
817    yt=2*real(nymin1)-yt
818  endif
819
820  ! Check position: If trajectory outside model domain, terminate it
821  !*****************************************************************
822
823  if ((xt.lt.0.).or.(xt.ge.real(nxmin1)).or.(yt.lt.0.).or. &
824       (yt.gt.real(nymin1))) then
825    nstop=3
826    return
827  endif
828
829  ! If particle above highest model level, set it back into the domain
830  !*******************************************************************
831
832  if (zt.ge.height(nz)) zt=height(nz)-100.*eps
833
834
835  !************************************************************************
836  ! Now we could finish, as this was done in FLEXPART versions up to 4.0.
837  ! However, truncation errors of the advection can be significantly
838  ! reduced by doing one iteration of the Petterssen scheme, if this is
839  ! possible.
840  ! Note that this is applied only to the grid-scale winds, not to
841  ! the turbulent winds.
842  !************************************************************************
843
844  ! The Petterssen scheme can only applied with long time steps (only then u
845  ! is the "old" wind as required by the scheme); otherwise do nothing
846  !*************************************************************************
847
848  if (ldt.ne.abs(lsynctime)) return
849
850  ! The Petterssen scheme can only be applied if the ending time of the time step
851  ! (itime+ldt*ldirect) is still between the two wind fields held in memory;
852  ! otherwise do nothing
853  !******************************************************************************
854
855  if (abs(itime+ldt*ldirect).gt.abs(memtime(2))) return
856
857  ! Apply it also only if starting and ending point of current time step are on
858  ! the same grid; otherwise do nothing
859  !*****************************************************************************
860  if (nglobal.and.(yt.gt.switchnorthg)) then
861    ngr=-1
862  else if (sglobal.and.(yt.lt.switchsouthg)) then
863    ngr=-2
864  else
865    ngr=0
866    do j=numbnests,1,-1
867      if ((xt.gt.xln(j)+eps).and.(xt.lt.xrn(j)-eps).and. &
868           (yt.gt.yln(j)+eps).and.(yt.lt.yrn(j)-eps)) then
869        ngr=j
870        goto 43
871      endif
872    end do
87343   continue
874  endif
875
876  if (ngr.ne.ngrid) return
877
878  ! Determine nested grid coordinates
879  !**********************************
880
881  if (ngrid.gt.0) then
882    xtn=(xt-xln(ngrid))*xresoln(ngrid)
883    ytn=(yt-yln(ngrid))*yresoln(ngrid)
884    ix=int(xtn)
885    jy=int(ytn)
886  else
887    ix=int(xt)
888    jy=int(yt)
889  endif
890  ixp=ix+1
891  jyp=jy+1
892
893
894  ! Memorize the old wind
895  !**********************
896
897  uold=u
898  vold=v
899  wold=w
900
901  ! Interpolate wind at new position and time
902  !******************************************
903
904  if (ngrid.le.0) then
905    xts=real(xt)
906    yts=real(yt)
907    call interpol_wind_short(itime+ldt*ldirect,xts,yts,zt)
908  else
909    call interpol_wind_short_nests(itime+ldt*ldirect,xtn,ytn,zt)
910  endif
911
912  if (mdomainfill.eq.0) then
913    if (lsettling) then
914      do nsp=1,nspec
915        if (xmass(nrelpoint,nsp).gt.eps3) exit
916      end do
917      if (nsp.gt.nspec) then
918        nsp=nspec
919      end if
920      if (density(nsp).gt.0.) then
921        call get_settling(itime+ldt,real(xt),real(yt),zt,nsp,settling) !bugfix
922        w=w+settling
923      end if
924    endif
925  end if
926
927
928  ! Determine the difference vector between new and old wind
929  ! (use half of it to correct position according to Petterssen)
930  !*************************************************************
931
932  u=(u-uold)/2.
933  v=(v-vold)/2.
934  w=(w-wold)/2.
935
936
937  ! Finally, correct the old position
938  !**********************************
939
940  zt=zt+w*real(ldt*ldirect)
941  if (zt.lt.0.) zt=min(h-eps2,-1.*zt)    ! if particle below ground -> reflection
942  if (ngrid.ge.0) then
943    cosfact=dxconst/cos((yt*dy+ylat0)*pi180)
944    xt=xt+real(u*cosfact*real(ldt*ldirect),kind=dp)
945    yt=yt+real(v*dyconst*real(ldt*ldirect),kind=dp)
946  else if (ngrid.eq.-1) then      ! around north pole
947    xlon=xlon0+xt*dx
948    ylat=ylat0+yt*dy
949    call cll2xy(northpolemap,ylat,xlon,xpol,ypol)
950    gridsize=1000.*cgszll(northpolemap,ylat,xlon)
951    u=u/gridsize
952    v=v/gridsize
953    xpol=xpol+u*real(ldt*ldirect)
954    ypol=ypol+v*real(ldt*ldirect)
955    call cxy2ll(northpolemap,xpol,ypol,ylat,xlon)
956    xt=(xlon-xlon0)/dx
957    yt=(ylat-ylat0)/dy
958  else if (ngrid.eq.-2) then    ! around south pole
959    xlon=xlon0+xt*dx
960    ylat=ylat0+yt*dy
961    call cll2xy(southpolemap,ylat,xlon,xpol,ypol)
962    gridsize=1000.*cgszll(southpolemap,ylat,xlon)
963    u=u/gridsize
964    v=v/gridsize
965    xpol=xpol+u*real(ldt*ldirect)
966    ypol=ypol+v*real(ldt*ldirect)
967    call cxy2ll(southpolemap,xpol,ypol,ylat,xlon)
968    xt=(xlon-xlon0)/dx
969    yt=(ylat-ylat0)/dy
970  endif
971
972  ! If global data are available, use cyclic boundary condition
973  !************************************************************
974
975  if (xglobal) then
976    if (xt.ge.real(nxmin1)) xt=xt-real(nxmin1)
977    if (xt.lt.0.) xt=xt+real(nxmin1)
978    if (xt.le.eps) xt=eps
979    if (abs(xt-real(nxmin1)).le.eps) xt=real(nxmin1)-eps
980  endif
981
982  ! HSO/AL: Prevent particles from disappearing at the pole
983  !******************************************************************
984
985  if ( yt.lt.0. ) then
986    xt=mod(xt+180.,360.)
987    yt=-yt
988  else if ( yt.gt.real(nymin1) ) then
989    xt=mod(xt+180.,360.)
990    yt=2*real(nymin1)-yt
991  endif
992
993  ! Check position: If trajectory outside model domain, terminate it
994  !*****************************************************************
995
996  if ((xt.lt.0.).or.(xt.ge.real(nxmin1)).or.(yt.lt.0.).or. &
997       (yt.gt.real(nymin1))) then
998    nstop=3
999    return
1000  endif
1001
1002  ! If particle above highest model level, set it back into the domain
1003  !*******************************************************************
1004
1005  if (zt.ge.height(nz)) zt=height(nz)-100.*eps
1006
1007
1008end subroutine advance
1009
Note: See TracBrowser for help on using the repository browser.
hosted by ZAMG