source: flexpart.git/src/advance.f90 @ 94735e2

10.4.1_peseiGFS_025bugfixes+enhancementsdevrelease-10release-10.4.1scaling-bugunivie
Last change on this file since 94735e2 was 94735e2, checked in by Sabine <sabine.eckhardt@…>, 7 years ago

added switch turboff to run FLEXPART without turbulence

  • Property mode set to 100644
File size: 34.5 KB
RevLine 
[e200b7a]1!**********************************************************************
2! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
3! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
4! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
5!                                                                     *
6! This file is part of FLEXPART.                                      *
7!                                                                     *
8! FLEXPART is free software: you can redistribute it and/or modify    *
9! it under the terms of the GNU General Public License as published by*
10! the Free Software Foundation, either version 3 of the License, or   *
11! (at your option) any later version.                                 *
12!                                                                     *
13! FLEXPART is distributed in the hope that it will be useful,         *
14! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
15! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
16! GNU General Public License for more details.                        *
17!                                                                     *
18! You should have received a copy of the GNU General Public License   *
19! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
20!**********************************************************************
21
22subroutine advance(itime,nrelpoint,ldt,up,vp,wp, &
23       usigold,vsigold,wsigold,nstop,xt,yt,zt,prob,icbt)
24  !                     i    i  i/oi/oi/o
25  !  i/o     i/o     i/o     o  i/oi/oi/o i/o  i/o
26  !*****************************************************************************
27  !                                                                            *
28  !  Calculation of turbulent particle trajectories utilizing a                *
29  !  zero-acceleration scheme, which is corrected by a numerically more        *
30  !  accurate Petterssen scheme whenever possible.                             *
31  !                                                                            *
32  !  Particle positions are read in, incremented, and returned to the calling  *
33  !  program.                                                                  *
34  !                                                                            *
35  !  In different regions of the atmosphere (PBL vs. free troposphere),        *
36  !  different parameters are needed for advection, parameterizing turbulent   *
37  !  velocities, etc. For efficiency, different interpolation routines have    *
38  !  been written for these different cases, with the disadvantage that there  *
39  !  exist several routines doing almost the same. They all share the          *
40  !  included file 'interpol_mod'. The following                               *
41  !  interpolation routines are used:                                          *
42  !                                                                            *
43  !  interpol_all(_nests)     interpolates everything (called inside the PBL)  *
44  !  interpol_misslev(_nests) if a particle moves vertically in the PBL,       *
45  !                           additional parameters are interpolated if it     *
46  !                           crosses a model level                            *
47  !  interpol_wind(_nests)    interpolates the wind and determines the         *
48  !                           standard deviation of the wind (called outside   *
49  !                           PBL) also interpolates potential vorticity       *
50  !  interpol_wind_short(_nests) only interpolates the wind (needed for the    *
51  !                           Petterssen scheme)                               *
52  !  interpol_vdep(_nests)    interpolates deposition velocities               *
53  !                                                                            *
54  !                                                                            *
55  !     Author: A. Stohl                                                       *
56  !                                                                            *
57  !     16 December 1997                                                       *
58  !                                                                            *
59  !  Changes:                                                                  *
60  !                                                                            *
61  !  8 April 2000: Deep convection parameterization                            *
62  !                                                                            *
63  !  May 2002: Petterssen scheme introduced                                    *
64  !                                                                            *
65  !*****************************************************************************
66  !                                                                            *
67  ! Variables:                                                                 *
68  ! icbt               1 if particle not transferred to forbidden state,       *
69  !                    else -1                                                 *
70  ! dawsave            accumulated displacement in along-wind direction        *
71  ! dcwsave            accumulated displacement in cross-wind direction        *
72  ! dxsave             accumulated displacement in longitude                   *
73  ! dysave             accumulated displacement in latitude                    *
74  ! h [m]              Mixing height                                           *
75  ! lwindinterv [s]    time interval between two wind fields                   *
76  ! itime [s]          time at which this subroutine is entered                *
77  ! itimec [s]         actual time, which is incremented in this subroutine    *
78  ! href [m]           height for which dry deposition velocity is calculated  *
79  ! ladvance [s]       Total integration time period                           *
80  ! ldirect            1 forward, -1 backward                                  *
81  ! ldt [s]            Time step for the next integration                      *
82  ! lsynctime [s]      Synchronisation interval of FLEXPART                    *
83  ! ngrid              index which grid is to be used                          *
84  ! nrand              index for a variable to be picked from rannumb          *
85  ! nstop              if > 1 particle has left domain and must be stopped     *
86  ! prob               probability of absorption due to dry deposition         *
87  ! rannumb(maxrand)   normally distributed random variables                   *
88  ! rhoa               air density                                             *
89  ! rhograd            vertical gradient of the air density                    *
90  ! up,vp,wp           random velocities due to turbulence (along wind, cross  *
91  !                    wind, vertical wind                                     *
92  ! usig,vsig,wsig     mesoscale wind fluctuations                             *
93  ! usigold,vsigold,wsigold  like usig, etc., but for the last time step       *
94  ! vdepo              Deposition velocities for all species                   *
95  ! xt,yt,zt           Particle position                                       *
96  !                                                                            *
97  !*****************************************************************************
98
99  use point_mod
100  use par_mod
101  use com_mod
102  use interpol_mod
103  use hanna_mod
104  use cmapf_mod
[8a65cb0]105  use random_mod, only: ran3
[e200b7a]106
107  implicit none
108
109  real(kind=dp) :: xt,yt
110  real :: zt,xts,yts,weight
[8a65cb0]111  integer :: itime,itimec,nstop,ldt,i,j,k,nrand,loop,memindnext,mind
[e200b7a]112  integer :: ngr,nix,njy,ks,nsp,nrelpoint
113  real :: dz,dz1,dz2,xlon,ylat,xpol,ypol,gridsize
114  real :: ru,rv,rw,dt,ux,vy,cosfact,xtn,ytn,tropop
115  real :: prob(maxspec),up,vp,wp,dxsave,dysave,dawsave
116  real :: dcwsave
117  real :: usigold,vsigold,wsigold,r,rs
118  real :: uold,vold,wold,vdepo(maxspec)
[7725d96]119  real :: h1(2)
[e200b7a]120  !real uprof(nzmax),vprof(nzmax),wprof(nzmax)
121  !real usigprof(nzmax),vsigprof(nzmax),wsigprof(nzmax)
122  !real rhoprof(nzmax),rhogradprof(nzmax)
[8a65cb0]123  real :: rhoa,rhograd,delz,dtf,rhoaux,dtftlw,uxscale,wpscale
[e200b7a]124  integer(kind=2) :: icbt
125  real,parameter :: eps=nxmax/3.e5,eps2=1.e-9
[8a65cb0]126  real :: ptot_lhh,Q_lhh,phi_lhh,ath,bth !modified by mc
127  real :: old_wp_buf,dcas,dcas1,del_test !added by mc
128  integer :: i_well,jj,flagrein !test well mixed: modified by mc
[e200b7a]129
130
131  !!! CHANGE: TEST OF THE WELL-MIXED CRITERION
132  !  integer,parameter :: iclass=10
133  !  real(kind=dp) :: zacc,tacc,t(iclass),th(0:iclass),hsave
134  !  logical dump
135  !  save zacc,tacc,t,th,hsave,dump
136  !!! CHANGE
137
138  integer :: idummy = -7
139  real    :: settling = 0.
140
141
142  !!! CHANGE: TEST OF THE WELL-MIXED CRITERION
143  !if (idummy.eq.-7) then
144  !open(550,file='WELLMIXEDTEST')
145  !do 17 i=0,iclass
146  !7      th(i)=real(i)/real(iclass)
147  !endif
148  !!! CHANGE
149
150
151  nstop=0
152  do i=1,nmixz
153    indzindicator(i)=.true.
154  end do
155
156
157  if (DRYDEP) then    ! reset probability for deposition
158    do ks=1,nspec
159      depoindicator(ks)=.true.
160      prob(ks)=0.
161    end do
162  endif
163
164  dxsave=0.           ! reset position displacements
165  dysave=0.           ! due to mean wind
166  dawsave=0.          ! and turbulent wind
167  dcwsave=0.
168
169  itimec=itime
170
171  nrand=int(ran3(idummy)*real(maxrand-1))+1
172
173
174  ! Determine whether lat/long grid or polarstereographic projection
175  ! is to be used
176  ! Furthermore, determine which nesting level to be used
177  !*****************************************************************
178
179  if (nglobal.and.(yt.gt.switchnorthg)) then
180    ngrid=-1
181  else if (sglobal.and.(yt.lt.switchsouthg)) then
182    ngrid=-2
183  else
184    ngrid=0
185    do j=numbnests,1,-1
186      if ((xt.gt.xln(j)+eps).and.(xt.lt.xrn(j)-eps).and. &
187           (yt.gt.yln(j)+eps).and.(yt.lt.yrn(j)-eps)) then
188        ngrid=j
189        goto 23
190      endif
191    end do
19223   continue
193  endif
194
195
196  !***************************
197  ! Interpolate necessary data
198  !***************************
199
200  if (abs(itime-memtime(1)).lt.abs(itime-memtime(2))) then
201    memindnext=1
202  else
203    memindnext=2
204  endif
205
206  ! Determine nested grid coordinates
207  !**********************************
208
209  if (ngrid.gt.0) then
210    xtn=(xt-xln(ngrid))*xresoln(ngrid)
211    ytn=(yt-yln(ngrid))*yresoln(ngrid)
212    ix=int(xtn)
213    jy=int(ytn)
214    nix=nint(xtn)
215    njy=nint(ytn)
216  else
217    ix=int(xt)
218    jy=int(yt)
219    nix=nint(xt)
220    njy=nint(yt)
221  endif
222  ixp=ix+1
223  jyp=jy+1
224
225
[7725d96]226 ! Determine the lower left corner and its distance to the current position
227  !*************************************************************************
228
229  ddx=xt-real(ix)
230  ddy=yt-real(jy)
231  rddx=1.-ddx
232  rddy=1.-ddy
233  p1=rddx*rddy
234  p2=ddx*rddy
235  p3=rddx*ddy
236  p4=ddx*ddy
237
238 ! Calculate variables for time interpolation
239  !*******************************************
240
241  dt1=real(itime-memtime(1))
242  dt2=real(memtime(2)-itime)
243  dtt=1./(dt1+dt2)
244
[e200b7a]245  ! Compute maximum mixing height around particle position
246  !*******************************************************
247
248  h=0.
249  if (ngrid.le.0) then
250    do k=1,2
[cea125d]251       mind=memind(k) ! eso: compatibility with 3-field version
[2363b24]252       if (interpolhmix) then
[cea125d]253             h1(k)=p1*hmix(ix ,jy ,1,mind) &
254                 + p2*hmix(ixp,jy ,1,mind) &
255                 + p3*hmix(ix ,jyp,1,mind) &
256                 + p4*hmix(ixp,jyp,1,mind)
257        else
258          do j=jy,jyp
259            do i=ix,ixp
260               if (hmix(i,j,1,mind).gt.h) h=hmix(i,j,1,mind)
261            end do
262          end do
263        endif
[e200b7a]264    end do
265    tropop=tropopause(nix,njy,1,1)
266  else
267    do k=1,2
[8a65cb0]268      mind=memind(k)
[e200b7a]269      do j=jy,jyp
270        do i=ix,ixp
[8a65cb0]271          if (hmixn(i,j,1,mind,ngrid).gt.h) h=hmixn(i,j,1,mind,ngrid)
[e200b7a]272        end do
273      end do
274    end do
275    tropop=tropopausen(nix,njy,1,1,ngrid)
276  endif
277
[cea125d]278  if (interpolhmix) h=(h1(1)*dt2+h1(2)*dt1)*dtt
[e200b7a]279  zeta=zt/h
280
281
282
283  !*************************************************************
284  ! If particle is in the PBL, interpolate once and then make a
285  ! time loop until end of interval is reached
286  !*************************************************************
287
288  if (zeta.le.1.) then
289
290  ! BEGIN TIME LOOP
291  !================
292
293    loop=0
294100   loop=loop+1
295      if (method.eq.1) then
296        ldt=min(ldt,abs(lsynctime-itimec+itime))
297        itimec=itimec+ldt*ldirect
298      else
299        ldt=abs(lsynctime)
300        itimec=itime+lsynctime
301      endif
302      dt=real(ldt)
303
304      zeta=zt/h
305
306
307      if (loop.eq.1) then
308        if (ngrid.le.0) then
309          xts=real(xt)
310          yts=real(yt)
311          call interpol_all(itime,xts,yts,zt)
312        else
313          call interpol_all_nests(itime,xtn,ytn,zt)
314        endif
315
316      else
317
318
319  ! Determine the level below the current position for u,v,rho
320  !***********************************************************
321
322        do i=2,nz
323          if (height(i).gt.zt) then
324            indz=i-1
325            indzp=i
326            goto 6
327          endif
328        end do
3296       continue
330
331  ! If one of the levels necessary is not yet available,
332  ! calculate it
333  !*****************************************************
334
335        do i=indz,indzp
336          if (indzindicator(i)) then
337            if (ngrid.le.0) then
338              call interpol_misslev(i)
339            else
340              call interpol_misslev_nests(i)
341            endif
342          endif
343        end do
344      endif
345
346
347  ! Vertical interpolation of u,v,w,rho and drhodz
348  !***********************************************
349
350  ! Vertical distance to the level below and above current position
351  ! both in terms of (u,v) and (w) fields
352  !****************************************************************
353
354      dz=1./(height(indzp)-height(indz))
355      dz1=(zt-height(indz))*dz
356      dz2=(height(indzp)-zt)*dz
357
358      u=dz1*uprof(indzp)+dz2*uprof(indz)
359      v=dz1*vprof(indzp)+dz2*vprof(indz)
360      w=dz1*wprof(indzp)+dz2*wprof(indz)
361      rhoa=dz1*rhoprof(indzp)+dz2*rhoprof(indz)
362      rhograd=dz1*rhogradprof(indzp)+dz2*rhogradprof(indz)
363
364
365  ! Compute the turbulent disturbances
366  ! Determine the sigmas and the timescales
367  !****************************************
368
369      if (turbswitch) then
370        call hanna(zt)
371      else
372        call hanna1(zt)
373      endif
374
375
376  !*****************************************
377  ! Determine the new diffusivity velocities
378  !*****************************************
379
380  ! Horizontal components
381  !**********************
382
383      if (nrand+1.gt.maxrand) nrand=1
384      if (dt/tlu.lt..5) then
385        up=(1.-dt/tlu)*up+rannumb(nrand)*sigu*sqrt(2.*dt/tlu)
386      else
387        ru=exp(-dt/tlu)
388        up=ru*up+rannumb(nrand)*sigu*sqrt(1.-ru**2)
389      endif
390      if (dt/tlv.lt..5) then
391        vp=(1.-dt/tlv)*vp+rannumb(nrand+1)*sigv*sqrt(2.*dt/tlv)
392      else
393        rv=exp(-dt/tlv)
394        vp=rv*vp+rannumb(nrand+1)*sigv*sqrt(1.-rv**2)
395      endif
396      nrand=nrand+2
397
398
399      if (nrand+ifine.gt.maxrand) nrand=1
400      rhoaux=rhograd/rhoa
401      dtf=dt*fine
402
403      dtftlw=dtf/tlw
404
405  ! Loop over ifine short time steps for vertical component
406  !********************************************************
407
408      do i=1,ifine
409
410  ! Determine the drift velocity and density correction velocity
411  !*************************************************************
412
413        if (turbswitch) then
414          if (dtftlw.lt..5) then
[8a65cb0]415  !*************************************************************
416  !************** CBL options added by mc see routine cblf90 ***
417            if (cblflag.eq.1) then  !modified by mc
418              if (-h/ol.gt.5) then  !modified by mc
419              !if (ol.lt.0.) then   !modified by mc 
420              !if (ol.gt.0.) then   !modified by mc : for test
421                  !print  *,zt,wp,ath,bth,tlw,dtf,'prima'
422                  flagrein=0
423                  nrand=nrand+1
424                  old_wp_buf=wp
425                  call cbl(wp,zt,ust,wst,h,rhoa,rhograd,sigw,dsigwdz,tlw,ptot_lhh,Q_lhh,phi_lhh,ath,bth,ol,flagrein) !inside the routine for inverse time
426                  wp=(wp+ath*dtf+bth*rannumb(nrand)*sqrt(dtf))*real(icbt)
427                  ! wp=(wp+ath*dtf+bth*gasdev2(mydum)*sqrt(dtf))*real(icbt)
428                  delz=wp*dtf
429                  if (flagrein.eq.1) then
430                      call re_initialize_particle(zt,ust,wst,h,sigw,old_wp_buf,nrand,ol)
431                      wp=old_wp_buf
432                      delz=wp*dtf
433                      nan_count=nan_count+1
434                  end if
435                  !print  *,zt,wp,ath,bth,tlw,dtf,rannumb(nrand+i),icbt
436                  !pause                 
437              else
438                  nrand=nrand+1
439                  old_wp_buf=wp
440                  ath=-wp/tlw+sigw*dsigwdz+wp*wp/sigw*dsigwdz+sigw*sigw/rhoa*rhograd  !1-note for inverse time should be -wp/tlw*ldirect+... calculated for wp=-wp
441                                                                                      !2-but since ldirect =-1 for inverse time and this must be calculated for (-wp) and
442                                                                                      !3-the gaussian pdf is symmetric (i.e. pdf(w)=pdf(-w) ldirect can be discarded
443                  bth=sigw*rannumb(nrand)*sqrt(2.*dtftlw)
444                  wp=(wp+ath*dtf+bth)*real(icbt) 
445                  delz=wp*dtf
446                  del_test=(1.-wp)/wp !catch infinity value
447                  if (isnan(wp).or.isnan(del_test)) then
448                      nrand=nrand+1                     
449                      wp=sigw*rannumb(nrand)
450                      delz=wp*dtf
451                      nan_count2=nan_count2+1
452                      !print *,'NaN coutner equal to:', nan_count,'reduce ifine if this number became a non-negligible fraction of the particle number'
453                  end if 
454              end if
455  !******************** END CBL option *******************************           
456  !*******************************************************************           
457            else
458                 wp=((1.-dtftlw)*wp+rannumb(nrand+i)*sqrt(2.*dtftlw) &
459                 +dtf*(dsigwdz+rhoaux*sigw))*real(icbt)
460                 delz=wp*sigw*dtf
461            end if
[e200b7a]462          else
463            rw=exp(-dtftlw)
464            wp=(rw*wp+rannumb(nrand+i)*sqrt(1.-rw**2) &
465                 +tlw*(1.-rw)*(dsigwdz+rhoaux*sigw))*real(icbt)
[8a65cb0]466            delz=wp*sigw*dtf
[e200b7a]467          endif
[8a65cb0]468         
[e200b7a]469        else
470          rw=exp(-dtftlw)
471          wp=(rw*wp+rannumb(nrand+i)*sqrt(1.-rw**2)*sigw &
472               +tlw*(1.-rw)*(dsigw2dz+rhoaux*sigw**2))*real(icbt)
473          delz=wp*dtf
474        endif
475
[94735e2]476        if (turboff) then
477!sec switch off turbulence
478          up=0.0
479          vp=0.0
480          wp=0.0
481          delz=0.
482        endif
483
[e200b7a]484  !****************************************************
485  ! Compute turbulent vertical displacement of particle
486  !****************************************************
487
488        if (abs(delz).gt.h) delz=mod(delz,h)
489
490  ! Determine if particle transfers to a "forbidden state" below the ground
491  ! or above the mixing height
492  !************************************************************************
493
494        if (delz.lt.-zt) then         ! reflection at ground
495          icbt=-1
496          zt=-zt-delz
497        else if (delz.gt.(h-zt)) then ! reflection at h
498          icbt=-1
499          zt=-zt-delz+2.*h
500        else                         ! no reflection
501          icbt=1
502          zt=zt+delz
503        endif
504
505        if (i.ne.ifine) then
506          zeta=zt/h
507          call hanna_short(zt)
508        endif
509
510      end do
[8a65cb0]511      if (cblflag.ne.1) nrand=nrand+i
[e200b7a]512
513  ! Determine time step for next integration
514  !*****************************************
515
516      if (turbswitch) then
517        ldt=int(min(tlw,h/max(2.*abs(wp*sigw),1.e-5), &
518             0.5/abs(dsigwdz))*ctl)
519      else
520        ldt=int(min(tlw,h/max(2.*abs(wp),1.e-5))*ctl)
521      endif
522      ldt=max(ldt,mintime)
523
524
525  ! If particle represents only a single species, add gravitational settling
526  ! velocity. The settling velocity is zero for gases, or if particle
527  ! represents more than one species
528  !*************************************************************************
529
530      if (mdomainfill.eq.0) then
[18adf60]531! ESO 05.2015  Changed this to fix MQUASILAG option, where nrelpoint is
532!              particle number and thus xmass array goes out of bounds
533!        do nsp=1,nspec
534!           if (xmass(nrelpoint,nsp).gt.eps2) goto 887
535!         end do
536! 887     nsp=min(nsp,nspec)
537        if (nspec.eq.1.and.density(1).gt.0.) then
[a652cd5]538          call get_settling(itime,real(xt),real(yt),zt,nspec,settling)  !bugfix
[18adf60]539        end if
[e200b7a]540        w=w+settling
541      endif
542
543  ! Horizontal displacements during time step dt are small real values compared
544  ! to the position; adding the two, would result in large numerical errors.
545  ! Thus, displacements are accumulated during lsynctime and are added to the
546  ! position at the end
547  !****************************************************************************
548
549      dxsave=dxsave+u*dt
550      dysave=dysave+v*dt
551      dawsave=dawsave+up*dt
552      dcwsave=dcwsave+vp*dt
553      zt=zt+w*dt*real(ldirect)
554
[8a65cb0]555      ! HSO/AL: Particle managed to go over highest level -> interpolation error in goto 700
556      !          alias interpol_wind (division by zero)
557      if (zt.ge.height(nz)) zt=height(nz)-100.*eps
558
[e200b7a]559      if (zt.gt.h) then
560        if (itimec.eq.itime+lsynctime) goto 99
561        goto 700    ! complete the current interval above PBL
562      endif
563
564
565  !!! CHANGE: TEST OF THE WELL-MIXED CRITERION
566  !!! These lines may be switched on to test the well-mixed criterion
567  !if (zt.le.h) then
568  !  zacc=zacc+zt/h*dt
569  !  hsave=hsave+h*dt
570  !  tacc=tacc+dt
571  !  do 67 i=1,iclass
572  !    if ((zt/h.gt.th(i-1)).and.(zt/h.le.th(i)))
573  !    +    t(i)=t(i)+dt
574  !7        continue
575  !endif
576  !if ((mod(itime,10800).eq.0).and.dump) then
577  ! dump=.false.
578  ! write(550,'(i6,12f10.3)') itime,hsave/tacc,zacc/tacc,
579  !    + (t(i)/tacc*real(iclass),i=1,iclass)
580  !  zacc=0.
581  !  tacc=0.
582  !  do 68 i=1,iclass
583  !8        t(i)=0.
584  !  hsave=0.
585  !endif
586  !if (mod(itime,10800).ne.0) dump=.true.
587  !!! CHANGE
[8a65cb0]588     
[e200b7a]589  ! Determine probability of deposition
590  !************************************
591
592      if ((DRYDEP).and.(zt.lt.2.*href)) then
593        do ks=1,nspec
594          if (DRYDEPSPEC(ks)) then
595            if (depoindicator(ks)) then
596              if (ngrid.le.0) then
597                call interpol_vdep(ks,vdepo(ks))
598              else
599                call interpol_vdep_nests(ks,vdepo(ks))
600              endif
601            endif
602  ! correction by Petra Seibert, 10 April 2001
603  !   this formulation means that prob(n) = 1 - f(0)*...*f(n)
604  !   where f(n) is the exponential term
605               prob(ks)=1.+(prob(ks)-1.)* &
606                    exp(-vdepo(ks)*abs(dt)/(2.*href))
607          endif
608        end do
609      endif
610
611      if (zt.lt.0.) zt=min(h-eps2,-1.*zt)    ! if particle below ground -> reflection
612
613      if (itimec.eq.(itime+lsynctime)) then
614        usig=0.5*(usigprof(indzp)+usigprof(indz))
615        vsig=0.5*(vsigprof(indzp)+vsigprof(indz))
616        wsig=0.5*(wsigprof(indzp)+wsigprof(indz))
617        goto 99  ! finished
618      endif
619      goto 100
620
621  ! END TIME LOOP
622  !==============
623
624
625  endif
626
627
628
629  !**********************************************************
630  ! For all particles that are outside the PBL, make a single
631  ! time step. Only horizontal turbulent disturbances are
632  ! calculated. Vertical disturbances are reset.
633  !**********************************************************
634
635
636  ! Interpolate the wind
637  !*********************
638
639700   continue
640  if (ngrid.le.0) then
641    xts=real(xt)
642    yts=real(yt)
643    call interpol_wind(itime,xts,yts,zt)
644  else
645    call interpol_wind_nests(itime,xtn,ytn,zt)
646  endif
647
648
649  ! Compute everything for above the PBL
650
651  ! Assume constant, uncorrelated, turbulent perturbations
652  ! In the stratosphere, use a small vertical diffusivity d_strat,
653  ! in the troposphere, use a larger horizontal diffusivity d_trop.
654  ! Turbulent velocity scales are determined based on sqrt(d_trop/dt)
655  !******************************************************************
656
657  ldt=abs(lsynctime-itimec+itime)
658  dt=real(ldt)
659
660  if (zt.lt.tropop) then  ! in the troposphere
661    uxscale=sqrt(2.*d_trop/dt)
662    if (nrand+1.gt.maxrand) nrand=1
663    ux=rannumb(nrand)*uxscale
664    vy=rannumb(nrand+1)*uxscale
665    nrand=nrand+2
666    wp=0.
667  else if (zt.lt.tropop+1000.) then     ! just above the tropopause: make transition
668    weight=(zt-tropop)/1000.
669    uxscale=sqrt(2.*d_trop/dt*(1.-weight))
670    if (nrand+2.gt.maxrand) nrand=1
671    ux=rannumb(nrand)*uxscale
672    vy=rannumb(nrand+1)*uxscale
673    wpscale=sqrt(2.*d_strat/dt*weight)
674    wp=rannumb(nrand+2)*wpscale+d_strat/1000.
675    nrand=nrand+3
676  else                 ! in the stratosphere
677    if (nrand.gt.maxrand) nrand=1
678    ux=0.
679    vy=0.
680    wpscale=sqrt(2.*d_strat/dt)
681    wp=rannumb(nrand)*wpscale
682    nrand=nrand+1
683  endif
684
[94735e2]685  if (turboff) then
686!sec switch off turbulence
687    ux=0.0
688    vy=0.0
689    wp=0.0
690  endif
[e200b7a]691
692  ! If particle represents only a single species, add gravitational settling
693  ! velocity. The settling velocity is zero for gases
694  !*************************************************************************
695
696
697
698    if (mdomainfill.eq.0) then
[18adf60]699! ESO 05.2015  Changed this to fix MQUASILAG option, where nrelpoint is
700!              particle number and thus xmass array goes out of bounds
701
702!      do nsp=1,nspec
703!         if (xmass(nrelpoint,nsp).gt.eps2) goto 888
704!       end do
705! 888   nsp=min(nsp,nspec)
706!        if (density(nsp).gt.0.) then
707      if (nspec.eq.1.and.density(1).gt.0.) then
[a652cd5]708        call get_settling(itime,real(xt),real(yt),zt,nspec,settling)  !bugfix
[18adf60]709      end if
[e200b7a]710      w=w+settling
711    endif
712
713  ! Calculate position at time step itime+lsynctime
714  !************************************************
715
716  dxsave=dxsave+(u+ux)*dt
717  dysave=dysave+(v+vy)*dt
718  zt=zt+(w+wp)*dt*real(ldirect)
719  if (zt.lt.0.) zt=min(h-eps2,-1.*zt)    ! if particle below ground -> reflection
720
72199   continue
722
723
724
725  !****************************************************************
726  ! Add mesoscale random disturbances
727  ! This is done only once for the whole lsynctime interval to save
728  ! computation time
729  !****************************************************************
730
731
732  ! Mesoscale wind velocity fluctuations are obtained by scaling
733  ! with the standard deviation of the grid-scale winds surrounding
734  ! the particle location, multiplied by a factor turbmesoscale.
735  ! The autocorrelation time constant is taken as half the
736  ! time interval between wind fields
737  !****************************************************************
738
739  r=exp(-2.*real(abs(lsynctime))/real(lwindinterv))
740  rs=sqrt(1.-r**2)
741  if (nrand+2.gt.maxrand) nrand=1
742  usigold=r*usigold+rs*rannumb(nrand)*usig*turbmesoscale
743  vsigold=r*vsigold+rs*rannumb(nrand+1)*vsig*turbmesoscale
744  wsigold=r*wsigold+rs*rannumb(nrand+2)*wsig*turbmesoscale
745
746  dxsave=dxsave+usigold*real(lsynctime)
747  dysave=dysave+vsigold*real(lsynctime)
748
749  zt=zt+wsigold*real(lsynctime)
750  if (zt.lt.0.) zt=-1.*zt    ! if particle below ground -> refletion
751
752  !*************************************************************
753  ! Transform along and cross wind components to xy coordinates,
754  ! add them to u and v, transform u,v to grid units/second
755  ! and calculate new position
756  !*************************************************************
757
758  call windalign(dxsave,dysave,dawsave,dcwsave,ux,vy)
[8a65cb0]759  dxsave=dxsave+ux   ! comment by mc: comment this line to stop the particles horizontally for test reasons
[e200b7a]760  dysave=dysave+vy
761  if (ngrid.ge.0) then
762    cosfact=dxconst/cos((yt*dy+ylat0)*pi180)
763    xt=xt+real(dxsave*cosfact*real(ldirect),kind=dp)
764    yt=yt+real(dysave*dyconst*real(ldirect),kind=dp)
765  else if (ngrid.eq.-1) then      ! around north pole
[8a65cb0]766    xlon=xlon0+xt*dx                                !comment by mc: compute old particle position
[e200b7a]767    ylat=ylat0+yt*dy
[8a65cb0]768    call cll2xy(northpolemap,ylat,xlon,xpol,ypol)   !convert old particle position in polar stereographic
769    gridsize=1000.*cgszll(northpolemap,ylat,xlon)   !calculate size in m of grid element in polar stereographic coordinate
770    dxsave=dxsave/gridsize                          !increment from meter to grdi unit
[e200b7a]771    dysave=dysave/gridsize
[8a65cb0]772    xpol=xpol+dxsave*real(ldirect)                  !position in grid unit polar stereographic
[e200b7a]773    ypol=ypol+dysave*real(ldirect)
[8a65cb0]774    call cxy2ll(northpolemap,xpol,ypol,ylat,xlon)  !convert to lat long coordinate
775    xt=(xlon-xlon0)/dx                             !convert to grid units in lat long coordinate, comment by mc
[e200b7a]776    yt=(ylat-ylat0)/dy
777  else if (ngrid.eq.-2) then    ! around south pole
778    xlon=xlon0+xt*dx
779    ylat=ylat0+yt*dy
780    call cll2xy(southpolemap,ylat,xlon,xpol,ypol)
781    gridsize=1000.*cgszll(southpolemap,ylat,xlon)
782    dxsave=dxsave/gridsize
783    dysave=dysave/gridsize
784    xpol=xpol+dxsave*real(ldirect)
785    ypol=ypol+dysave*real(ldirect)
786    call cxy2ll(southpolemap,xpol,ypol,ylat,xlon)
787    xt=(xlon-xlon0)/dx
788    yt=(ylat-ylat0)/dy
789  endif
790
791
792  ! If global data are available, use cyclic boundary condition
793  !************************************************************
794
795  if (xglobal) then
796    if (xt.ge.real(nxmin1)) xt=xt-real(nxmin1)
797    if (xt.lt.0.) xt=xt+real(nxmin1)
798    if (xt.le.eps) xt=eps
799    if (abs(xt-real(nxmin1)).le.eps) xt=real(nxmin1)-eps
800  endif
801
[8a65cb0]802  ! HSO/AL: Prevent particles from disappearing at the pole
803  !******************************************************************
804
805  if ( yt.lt.0. ) then
806    xt=mod(xt+180.,360.)
807    yt=-yt
808  else if ( yt.gt.real(nymin1) ) then
809    xt=mod(xt+180.,360.)
810    yt=2*real(nymin1)-yt
811  endif
[e200b7a]812
813  ! Check position: If trajectory outside model domain, terminate it
814  !*****************************************************************
815
816  if ((xt.lt.0.).or.(xt.ge.real(nxmin1)).or.(yt.lt.0.).or. &
[8a65cb0]817       (yt.gt.real(nymin1))) then
[e200b7a]818    nstop=3
819    return
820  endif
821
822  ! If particle above highest model level, set it back into the domain
823  !*******************************************************************
824
825  if (zt.ge.height(nz)) zt=height(nz)-100.*eps
826
827
828  !************************************************************************
829  ! Now we could finish, as this was done in FLEXPART versions up to 4.0.
830  ! However, truncation errors of the advection can be significantly
831  ! reduced by doing one iteration of the Petterssen scheme, if this is
832  ! possible.
833  ! Note that this is applied only to the grid-scale winds, not to
834  ! the turbulent winds.
835  !************************************************************************
836
837  ! The Petterssen scheme can only applied with long time steps (only then u
838  ! is the "old" wind as required by the scheme); otherwise do nothing
839  !*************************************************************************
840
841  if (ldt.ne.abs(lsynctime)) return
842
843  ! The Petterssen scheme can only be applied if the ending time of the time step
844  ! (itime+ldt*ldirect) is still between the two wind fields held in memory;
845  ! otherwise do nothing
846  !******************************************************************************
847
848  if (abs(itime+ldt*ldirect).gt.abs(memtime(2))) return
849
850  ! Apply it also only if starting and ending point of current time step are on
851  ! the same grid; otherwise do nothing
852  !*****************************************************************************
853  if (nglobal.and.(yt.gt.switchnorthg)) then
854    ngr=-1
855  else if (sglobal.and.(yt.lt.switchsouthg)) then
856    ngr=-2
857  else
858    ngr=0
859    do j=numbnests,1,-1
860      if ((xt.gt.xln(j)+eps).and.(xt.lt.xrn(j)-eps).and. &
861           (yt.gt.yln(j)+eps).and.(yt.lt.yrn(j)-eps)) then
862        ngr=j
863        goto 43
864      endif
865    end do
86643   continue
867  endif
868
869  if (ngr.ne.ngrid) return
870
871  ! Determine nested grid coordinates
872  !**********************************
873
874  if (ngrid.gt.0) then
875    xtn=(xt-xln(ngrid))*xresoln(ngrid)
876    ytn=(yt-yln(ngrid))*yresoln(ngrid)
877    ix=int(xtn)
878    jy=int(ytn)
879  else
880    ix=int(xt)
881    jy=int(yt)
882  endif
883  ixp=ix+1
884  jyp=jy+1
885
886
887  ! Memorize the old wind
888  !**********************
889
890  uold=u
891  vold=v
892  wold=w
893
894  ! Interpolate wind at new position and time
895  !******************************************
896
897  if (ngrid.le.0) then
898    xts=real(xt)
899    yts=real(yt)
900    call interpol_wind_short(itime+ldt*ldirect,xts,yts,zt)
901  else
902    call interpol_wind_short_nests(itime+ldt*ldirect,xtn,ytn,zt)
903  endif
904
905  if (mdomainfill.eq.0) then
[18adf60]906! ESO 05.2015  Changed this to fix MQUASILAG option, where nrelpoint is
907!              particle number and thus xmass array goes out of bounds
908!    do nsp=1,nspec
909!       if (xmass(nrelpoint,nsp).gt.eps2) goto 889
910!     end do
911! 889   nsp=min(nsp,nspec)
912!      if (density(nsp).gt.0.) then
913    if (nspec.eq.1.and.density(1).gt.0.) then
[a652cd5]914      call get_settling(itime+ldt,real(xt),real(yt),zt,nspec,settling)  !bugfix
[18adf60]915    end if
[e200b7a]916    w=w+settling
917  endif
918
919
920  ! Determine the difference vector between new and old wind
921  ! (use half of it to correct position according to Petterssen)
922  !*************************************************************
923
924  u=(u-uold)/2.
925  v=(v-vold)/2.
926  w=(w-wold)/2.
927
928
929  ! Finally, correct the old position
930  !**********************************
931
932  zt=zt+w*real(ldt*ldirect)
933  if (zt.lt.0.) zt=min(h-eps2,-1.*zt)    ! if particle below ground -> reflection
934  if (ngrid.ge.0) then
935    cosfact=dxconst/cos((yt*dy+ylat0)*pi180)
936    xt=xt+real(u*cosfact*real(ldt*ldirect),kind=dp)
937    yt=yt+real(v*dyconst*real(ldt*ldirect),kind=dp)
938  else if (ngrid.eq.-1) then      ! around north pole
939    xlon=xlon0+xt*dx
940    ylat=ylat0+yt*dy
941    call cll2xy(northpolemap,ylat,xlon,xpol,ypol)
942    gridsize=1000.*cgszll(northpolemap,ylat,xlon)
943    u=u/gridsize
944    v=v/gridsize
945    xpol=xpol+u*real(ldt*ldirect)
946    ypol=ypol+v*real(ldt*ldirect)
947    call cxy2ll(northpolemap,xpol,ypol,ylat,xlon)
948    xt=(xlon-xlon0)/dx
949    yt=(ylat-ylat0)/dy
950  else if (ngrid.eq.-2) then    ! around south pole
951    xlon=xlon0+xt*dx
952    ylat=ylat0+yt*dy
953    call cll2xy(southpolemap,ylat,xlon,xpol,ypol)
954    gridsize=1000.*cgszll(southpolemap,ylat,xlon)
955    u=u/gridsize
956    v=v/gridsize
957    xpol=xpol+u*real(ldt*ldirect)
958    ypol=ypol+v*real(ldt*ldirect)
959    call cxy2ll(southpolemap,xpol,ypol,ylat,xlon)
960    xt=(xlon-xlon0)/dx
961    yt=(ylat-ylat0)/dy
962  endif
963
964  ! If global data are available, use cyclic boundary condition
965  !************************************************************
966
967  if (xglobal) then
968    if (xt.ge.real(nxmin1)) xt=xt-real(nxmin1)
969    if (xt.lt.0.) xt=xt+real(nxmin1)
970    if (xt.le.eps) xt=eps
971    if (abs(xt-real(nxmin1)).le.eps) xt=real(nxmin1)-eps
972  endif
973
[8a65cb0]974  ! HSO/AL: Prevent particles from disappearing at the pole
975  !******************************************************************
976
977  if ( yt.lt.0. ) then
978    xt=mod(xt+180.,360.)
979    yt=-yt
980  else if ( yt.gt.real(nymin1) ) then
981    xt=mod(xt+180.,360.)
982    yt=2*real(nymin1)-yt
983  endif
984
[e200b7a]985  ! Check position: If trajectory outside model domain, terminate it
986  !*****************************************************************
987
988  if ((xt.lt.0.).or.(xt.ge.real(nxmin1)).or.(yt.lt.0.).or. &
[8a65cb0]989       (yt.gt.real(nymin1))) then
[e200b7a]990    nstop=3
991    return
992  endif
993
994  ! If particle above highest model level, set it back into the domain
995  !*******************************************************************
996
997  if (zt.ge.height(nz)) zt=height(nz)-100.*eps
998
999
1000end subroutine advance
1001
Note: See TracBrowser for help on using the repository browser.
hosted by ZAMG