1 | !********************************************************************** |
---|
2 | ! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 * |
---|
3 | ! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, * |
---|
4 | ! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann * |
---|
5 | ! * |
---|
6 | ! This file is part of FLEXPART. * |
---|
7 | ! * |
---|
8 | ! FLEXPART is free software: you can redistribute it and/or modify * |
---|
9 | ! it under the terms of the GNU General Public License as published by* |
---|
10 | ! the Free Software Foundation, either version 3 of the License, or * |
---|
11 | ! (at your option) any later version. * |
---|
12 | ! * |
---|
13 | ! FLEXPART is distributed in the hope that it will be useful, * |
---|
14 | ! but WITHOUT ANY WARRANTY; without even the implied warranty of * |
---|
15 | ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
---|
16 | ! GNU General Public License for more details. * |
---|
17 | ! * |
---|
18 | ! You should have received a copy of the GNU General Public License * |
---|
19 | ! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. * |
---|
20 | !********************************************************************** |
---|
21 | |
---|
22 | subroutine ohreaction(itime,ltsample,loutnext) |
---|
23 | ! i i i |
---|
24 | !***************************************************************************** |
---|
25 | ! * |
---|
26 | ! * |
---|
27 | ! Author: S. Eckhardt * |
---|
28 | ! * |
---|
29 | ! June 2007 * |
---|
30 | ! * |
---|
31 | ! * |
---|
32 | !***************************************************************************** |
---|
33 | ! Variables: * |
---|
34 | ! ix,jy indices of output grid cell for each particle * |
---|
35 | ! itime [s] actual simulation time [s] * |
---|
36 | ! jpart particle index * |
---|
37 | ! ldeltat [s] interval since radioactive decay was computed * |
---|
38 | ! loutnext [s] time for which gridded deposition is next output * |
---|
39 | ! loutstep [s] interval at which gridded deposition is output * |
---|
40 | ! oh_average [mol/m^3] OH Concentration * |
---|
41 | ! ltsample [s] interval over which mass is deposited * |
---|
42 | ! * |
---|
43 | !***************************************************************************** |
---|
44 | |
---|
45 | use oh_mod |
---|
46 | use par_mod |
---|
47 | use com_mod |
---|
48 | |
---|
49 | implicit none |
---|
50 | |
---|
51 | integer :: jpart,itime,ltsample,loutnext,ldeltat,j,k,ix,jy |
---|
52 | integer :: ngrid,il,interp_time,n,mm,indz,i |
---|
53 | integer :: jjjjmmdd,ihmmss,OHx,OHy,dOHx,dOHy,OHz |
---|
54 | real :: xtn,ytn,oh_average |
---|
55 | !real oh_diurn_var,sum_ang |
---|
56 | !real zenithangle, ang |
---|
57 | real :: restmass,ohreacted,OHinc |
---|
58 | real :: xlon, ylat, gas_const, act_energy |
---|
59 | real :: ohreact_temp_corr, act_temp |
---|
60 | real,parameter :: smallnum = tiny(0.0) ! smallest number that can be handled |
---|
61 | real(kind=dp) :: jul |
---|
62 | |
---|
63 | ! Compute interval since radioactive decay of deposited mass was computed |
---|
64 | !************************************************************************ |
---|
65 | |
---|
66 | gas_const=8.314 ! define gas constant |
---|
67 | act_energy=10000 ! activation energy |
---|
68 | |
---|
69 | !write(*,*) 'OH reaction n:',n,ohreact(1) |
---|
70 | if (itime.le.loutnext) then |
---|
71 | ldeltat=itime-(loutnext-loutstep) |
---|
72 | else ! first half of next interval |
---|
73 | ldeltat=itime-loutnext |
---|
74 | endif |
---|
75 | |
---|
76 | |
---|
77 | dOHx=360/(maxxOH-1) |
---|
78 | dOHy=180/(maxyOH-1) |
---|
79 | |
---|
80 | jul=bdate+real(itime,kind=dp)/86400._dp |
---|
81 | call caldate(jul,jjjjmmdd,ihmmss) |
---|
82 | mm=int((jjjjmmdd-(jjjjmmdd/10000)*10000)/100) |
---|
83 | |
---|
84 | do jpart=1,numpart |
---|
85 | |
---|
86 | ! Determine which nesting level to be used |
---|
87 | !***************************************** |
---|
88 | |
---|
89 | ngrid=0 |
---|
90 | do j=numbnests,1,-1 |
---|
91 | if ((xtra1(jpart).gt.xln(j)).and.(xtra1(jpart).lt.xrn(j)).and. & |
---|
92 | (ytra1(jpart).gt.yln(j)).and.(ytra1(jpart).lt.yrn(j))) then |
---|
93 | ngrid=j |
---|
94 | goto 23 |
---|
95 | endif |
---|
96 | end do |
---|
97 | 23 continue |
---|
98 | |
---|
99 | |
---|
100 | ! Determine nested grid coordinates |
---|
101 | !********************************** |
---|
102 | |
---|
103 | if (ngrid.gt.0) then |
---|
104 | xtn=(xtra1(jpart)-xln(ngrid))*xresoln(ngrid) |
---|
105 | ytn=(ytra1(jpart)-yln(ngrid))*yresoln(ngrid) |
---|
106 | ix=int(xtn) |
---|
107 | jy=int(ytn) |
---|
108 | else |
---|
109 | ix=int(xtra1(jpart)) |
---|
110 | jy=int(ytra1(jpart)) |
---|
111 | endif |
---|
112 | |
---|
113 | n=2 |
---|
114 | if (abs(memtime(1)-interp_time).lt.abs(memtime(2)-interp_time)) & |
---|
115 | n=1 |
---|
116 | |
---|
117 | do i=2,nz |
---|
118 | if (height(i).gt.ztra1(jpart)) then |
---|
119 | indz=i-1 |
---|
120 | goto 6 |
---|
121 | endif |
---|
122 | end do |
---|
123 | 6 continue |
---|
124 | |
---|
125 | ! The concentration from the nearest available gridcell is taken |
---|
126 | ! get OH concentration for the specific month and solar angle |
---|
127 | |
---|
128 | ! write(*,*) OH_field(1,1,1,1),OH_field(10,1,1,10) |
---|
129 | ! write(*,*) OH_field(1,maxxOH-1,maxyOH-1,1) |
---|
130 | ! write(*,*) OH_field(10,maxxOH-1,maxyOH-1,10) |
---|
131 | ! write(*,*) OH_field_height(1,10,4,1),OH_field_height(10,4,10,10) |
---|
132 | ! write(*,*) OH_field_height(1,maxxOH-1,maxyOH-1,1) |
---|
133 | ! write(*,*) OH_field_height(10,maxxOH-1,maxyOH-1,10) |
---|
134 | interp_time=nint(itime-0.5*ltsample) |
---|
135 | |
---|
136 | ! World coordinates |
---|
137 | xlon=xtra1(jpart)*dx+xlon0 |
---|
138 | if (xlon.gt.180) then |
---|
139 | xlon=xlon-360 |
---|
140 | endif |
---|
141 | ylat=ytra1(jpart)*dy+ylat0 |
---|
142 | ! get position in the OH field - assume that the OH field is global |
---|
143 | OHx=(180+xlon-1)/dOHx |
---|
144 | OHy=(90+ylat-1)/dOHy |
---|
145 | ! sum_ang=0 |
---|
146 | ! get the level of the OH height field were the actual particle is in |
---|
147 | ! ztra1 is the z-coordinate of the trajectory above model orography in m |
---|
148 | ! OH_field_height is the heigth of the OH field above orography |
---|
149 | OHz=maxzOH |
---|
150 | ! assume equally distrib. OH field, OH_field_height gives the middle of |
---|
151 | ! the z coordinate |
---|
152 | OHinc=(OH_field_height(3)-OH_field_height(2))/2 |
---|
153 | do il=2,maxzOH+1 |
---|
154 | if ((OH_field_height(il-1)+OHinc).gt.ztra1(jpart)) goto 26 |
---|
155 | end do |
---|
156 | 26 continue |
---|
157 | |
---|
158 | OHz=il-1 |
---|
159 | ! loop was not interrupted il would be 8 (9-1) |
---|
160 | if (OHz.gt.maxzOH) OHz=7 |
---|
161 | ! write (*,*) 'OH height: ' |
---|
162 | ! + ,ztra1(jpart),jpart,OHz,OH_field_height(OHz),OHinc, |
---|
163 | ! + OH_field_height |
---|
164 | |
---|
165 | oh_average=OH_field(mm,OHx,OHy,OHz) |
---|
166 | if (oh_average.gt.smallnum) then |
---|
167 | !********************************************************** |
---|
168 | ! if there is noOH concentration no reaction |
---|
169 | ! for performance reason take average concentration and |
---|
170 | ! ignore diurnal variation |
---|
171 | ! do 28 il=1,24 |
---|
172 | ! ang=70-zenithangle(ylat,xlon,jul+(24-il)/24.) |
---|
173 | ! if (ang.lt.0) then |
---|
174 | ! ang=0 |
---|
175 | ! endif |
---|
176 | ! sum_ang=sum_ang+ang |
---|
177 | !28 enddo |
---|
178 | ! oh_diurn_var=(ang/sum_ang)*(oh_average*24) |
---|
179 | ! oh_average=oh_diurn_var |
---|
180 | !********************************************************** |
---|
181 | |
---|
182 | |
---|
183 | ! Computation of the OH reaction |
---|
184 | !********************************************************** |
---|
185 | act_temp=tt(ix,jy,indz,n) |
---|
186 | |
---|
187 | do k=1,nspec ! loop over species |
---|
188 | if (ohreact(k).gt.0.) then |
---|
189 | ohreact_temp_corr=ohreact(k)*oh_average* & |
---|
190 | exp((act_energy/gas_const)*(1/298.15-1/act_temp)) |
---|
191 | ohreacted=xmass1(jpart,k)* & |
---|
192 | (1.-exp(-1*ohreact_temp_corr*abs(ltsample))) |
---|
193 | ! new particle mass: |
---|
194 | restmass = xmass1(jpart,k)-ohreacted |
---|
195 | if (restmass .gt. smallnum) then |
---|
196 | xmass1(jpart,k)=restmass |
---|
197 | ! write (104) xlon,ylat,ztra1(jpart),k,oh_diurn_var,jjjjmmdd, |
---|
198 | ! + ihmmss,restmass,ohreacted |
---|
199 | else |
---|
200 | xmass1(jpart,k)=0. |
---|
201 | endif |
---|
202 | ! write (*,*) 'restmass: ',restmass |
---|
203 | else |
---|
204 | ohreacted=0. |
---|
205 | endif |
---|
206 | end do |
---|
207 | |
---|
208 | endif |
---|
209 | !endif OH concentration gt 0 |
---|
210 | end do |
---|
211 | !continue loop over all particles |
---|
212 | |
---|
213 | end subroutine ohreaction |
---|