1 | !********************************************************************** |
---|
2 | ! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 * |
---|
3 | ! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, * |
---|
4 | ! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann * |
---|
5 | ! * |
---|
6 | ! This file is part of FLEXPART. * |
---|
7 | ! * |
---|
8 | ! FLEXPART is free software: you can redistribute it and/or modify * |
---|
9 | ! it under the terms of the GNU General Public License as published by* |
---|
10 | ! the Free Software Foundation, either version 3 of the License, or * |
---|
11 | ! (at your option) any later version. * |
---|
12 | ! * |
---|
13 | ! FLEXPART is distributed in the hope that it will be useful, * |
---|
14 | ! but WITHOUT ANY WARRANTY; without even the implied warranty of * |
---|
15 | ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
---|
16 | ! GNU General Public License for more details. * |
---|
17 | ! * |
---|
18 | ! You should have received a copy of the GNU General Public License * |
---|
19 | ! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. * |
---|
20 | !********************************************************************** |
---|
21 | |
---|
22 | subroutine interpol_misslev(n) |
---|
23 | ! i |
---|
24 | !***************************************************************************** |
---|
25 | ! * |
---|
26 | ! This subroutine interpolates u,v,w, density and density gradients. * |
---|
27 | ! * |
---|
28 | ! Author: A. Stohl * |
---|
29 | ! * |
---|
30 | ! 16 December 1997 * |
---|
31 | ! Update: 2 March 1999 * |
---|
32 | ! * |
---|
33 | ! Revision March 2005 by AST : all output variables in common block cal- * |
---|
34 | ! culation of standard deviation done in this * |
---|
35 | ! routine rather than subroutine call in order * |
---|
36 | ! to save computation time * |
---|
37 | ! * |
---|
38 | !***************************************************************************** |
---|
39 | ! * |
---|
40 | ! Variables: * |
---|
41 | ! n level * |
---|
42 | ! * |
---|
43 | ! Constants: * |
---|
44 | ! * |
---|
45 | !***************************************************************************** |
---|
46 | |
---|
47 | use par_mod |
---|
48 | use com_mod |
---|
49 | use interpol_mod |
---|
50 | use hanna_mod |
---|
51 | |
---|
52 | implicit none |
---|
53 | |
---|
54 | ! Auxiliary variables needed for interpolation |
---|
55 | real :: y1(2),y2(2),y3(2),rho1(2),rhograd1(2) |
---|
56 | real :: usl,vsl,wsl,usq,vsq,wsq,xaux |
---|
57 | integer :: m,n,indexh |
---|
58 | real,parameter :: eps=1.0e-30 |
---|
59 | |
---|
60 | |
---|
61 | !******************************************** |
---|
62 | ! Multilinear interpolation in time and space |
---|
63 | !******************************************** |
---|
64 | |
---|
65 | |
---|
66 | !************************************** |
---|
67 | ! 1.) Bilinear horizontal interpolation |
---|
68 | ! 2.) Temporal interpolation (linear) |
---|
69 | !************************************** |
---|
70 | |
---|
71 | ! Loop over 2 time steps |
---|
72 | !*********************** |
---|
73 | |
---|
74 | usl=0. |
---|
75 | vsl=0. |
---|
76 | wsl=0. |
---|
77 | usq=0. |
---|
78 | vsq=0. |
---|
79 | wsq=0. |
---|
80 | do m=1,2 |
---|
81 | indexh=memind(m) |
---|
82 | if (ngrid.lt.0) then |
---|
83 | y1(m)=p1*uupol(ix ,jy ,n,indexh) & |
---|
84 | +p2*uupol(ixp,jy ,n,indexh) & |
---|
85 | +p3*uupol(ix ,jyp,n,indexh) & |
---|
86 | +p4*uupol(ixp,jyp,n,indexh) |
---|
87 | y2(m)=p1*vvpol(ix ,jy ,n,indexh) & |
---|
88 | +p2*vvpol(ixp,jy ,n,indexh) & |
---|
89 | +p3*vvpol(ix ,jyp,n,indexh) & |
---|
90 | +p4*vvpol(ixp,jyp,n,indexh) |
---|
91 | usl=usl+uupol(ix ,jy ,n,indexh)+uupol(ixp,jy ,n,indexh) & |
---|
92 | +uupol(ix ,jyp,n,indexh)+uupol(ixp,jyp,n,indexh) |
---|
93 | vsl=vsl+vvpol(ix ,jy ,n,indexh)+vvpol(ixp,jy ,n,indexh) & |
---|
94 | +vvpol(ix ,jyp,n,indexh)+vvpol(ixp,jyp,n,indexh) |
---|
95 | |
---|
96 | usq=usq+uupol(ix ,jy ,n,indexh)*uupol(ix ,jy ,n,indexh)+ & |
---|
97 | uupol(ixp,jy ,n,indexh)*uupol(ixp,jy ,n,indexh)+ & |
---|
98 | uupol(ix ,jyp,n,indexh)*uupol(ix ,jyp,n,indexh)+ & |
---|
99 | uupol(ixp,jyp,n,indexh)*uupol(ixp,jyp,n,indexh) |
---|
100 | vsq=vsq+vvpol(ix ,jy ,n,indexh)*vvpol(ix ,jy ,n,indexh)+ & |
---|
101 | vvpol(ixp,jy ,n,indexh)*vvpol(ixp,jy ,n,indexh)+ & |
---|
102 | vvpol(ix ,jyp,n,indexh)*vvpol(ix ,jyp,n,indexh)+ & |
---|
103 | vvpol(ixp,jyp,n,indexh)*vvpol(ixp,jyp,n,indexh) |
---|
104 | else |
---|
105 | y1(m)=p1*uu(ix ,jy ,n,indexh) & |
---|
106 | +p2*uu(ixp,jy ,n,indexh) & |
---|
107 | +p3*uu(ix ,jyp,n,indexh) & |
---|
108 | +p4*uu(ixp,jyp,n,indexh) |
---|
109 | y2(m)=p1*vv(ix ,jy ,n,indexh) & |
---|
110 | +p2*vv(ixp,jy ,n,indexh) & |
---|
111 | +p3*vv(ix ,jyp,n,indexh) & |
---|
112 | +p4*vv(ixp,jyp,n,indexh) |
---|
113 | usl=usl+uu(ix ,jy ,n,indexh)+uu(ixp,jy ,n,indexh) & |
---|
114 | +uu(ix ,jyp,n,indexh)+uu(ixp,jyp,n,indexh) |
---|
115 | vsl=vsl+vv(ix ,jy ,n,indexh)+vv(ixp,jy ,n,indexh) & |
---|
116 | +vv(ix ,jyp,n,indexh)+vv(ixp,jyp,n,indexh) |
---|
117 | |
---|
118 | usq=usq+uu(ix ,jy ,n,indexh)*uu(ix ,jy ,n,indexh)+ & |
---|
119 | uu(ixp,jy ,n,indexh)*uu(ixp,jy ,n,indexh)+ & |
---|
120 | uu(ix ,jyp,n,indexh)*uu(ix ,jyp,n,indexh)+ & |
---|
121 | uu(ixp,jyp,n,indexh)*uu(ixp,jyp,n,indexh) |
---|
122 | vsq=vsq+vv(ix ,jy ,n,indexh)*vv(ix ,jy ,n,indexh)+ & |
---|
123 | vv(ixp,jy ,n,indexh)*vv(ixp,jy ,n,indexh)+ & |
---|
124 | vv(ix ,jyp,n,indexh)*vv(ix ,jyp,n,indexh)+ & |
---|
125 | vv(ixp,jyp,n,indexh)*vv(ixp,jyp,n,indexh) |
---|
126 | endif |
---|
127 | y3(m)=p1*ww(ix ,jy ,n,indexh) & |
---|
128 | +p2*ww(ixp,jy ,n,indexh) & |
---|
129 | +p3*ww(ix ,jyp,n,indexh) & |
---|
130 | +p4*ww(ixp,jyp,n,indexh) |
---|
131 | rhograd1(m)=p1*drhodz(ix ,jy ,n,indexh) & |
---|
132 | +p2*drhodz(ixp,jy ,n,indexh) & |
---|
133 | +p3*drhodz(ix ,jyp,n,indexh) & |
---|
134 | +p4*drhodz(ixp,jyp,n,indexh) |
---|
135 | rho1(m)=p1*rho(ix ,jy ,n,indexh) & |
---|
136 | +p2*rho(ixp,jy ,n,indexh) & |
---|
137 | +p3*rho(ix ,jyp,n,indexh) & |
---|
138 | +p4*rho(ixp,jyp,n,indexh) |
---|
139 | wsl=wsl+ww(ix ,jy ,n,indexh)+ww(ixp,jy ,n,indexh) & |
---|
140 | +ww(ix ,jyp,n,indexh)+ww(ixp,jyp,n,indexh) |
---|
141 | wsq=wsq+ww(ix ,jy ,n,indexh)*ww(ix ,jy ,n,indexh)+ & |
---|
142 | ww(ixp,jy ,n,indexh)*ww(ixp,jy ,n,indexh)+ & |
---|
143 | ww(ix ,jyp,n,indexh)*ww(ix ,jyp,n,indexh)+ & |
---|
144 | ww(ixp,jyp,n,indexh)*ww(ixp,jyp,n,indexh) |
---|
145 | end do |
---|
146 | uprof(n)=(y1(1)*dt2+y1(2)*dt1)*dtt |
---|
147 | vprof(n)=(y2(1)*dt2+y2(2)*dt1)*dtt |
---|
148 | wprof(n)=(y3(1)*dt2+y3(2)*dt1)*dtt |
---|
149 | rhoprof(n)=(rho1(1)*dt2+rho1(2)*dt1)*dtt |
---|
150 | rhogradprof(n)=(rhograd1(1)*dt2+rhograd1(2)*dt1)*dtt |
---|
151 | indzindicator(n)=.false. |
---|
152 | |
---|
153 | |
---|
154 | ! Compute standard deviations |
---|
155 | !**************************** |
---|
156 | |
---|
157 | xaux=usq-usl*usl/8. |
---|
158 | if (xaux.lt.eps) then |
---|
159 | usigprof(n)=0. |
---|
160 | else |
---|
161 | usigprof(n)=sqrt(xaux/7.) |
---|
162 | endif |
---|
163 | |
---|
164 | xaux=vsq-vsl*vsl/8. |
---|
165 | if (xaux.lt.eps) then |
---|
166 | vsigprof(n)=0. |
---|
167 | else |
---|
168 | vsigprof(n)=sqrt(xaux/7.) |
---|
169 | endif |
---|
170 | |
---|
171 | |
---|
172 | xaux=wsq-wsl*wsl/8. |
---|
173 | if (xaux.lt.eps) then |
---|
174 | wsigprof(n)=0. |
---|
175 | else |
---|
176 | wsigprof(n)=sqrt(xaux/7.) |
---|
177 | endif |
---|
178 | |
---|
179 | |
---|
180 | end subroutine interpol_misslev |
---|