1 | !********************************************************************** |
---|
2 | ! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 * |
---|
3 | ! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, * |
---|
4 | ! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann * |
---|
5 | ! * |
---|
6 | ! This file is part of FLEXPART. * |
---|
7 | ! * |
---|
8 | ! FLEXPART is free software: you can redistribute it and/or modify * |
---|
9 | ! it under the terms of the GNU General Public License as published by* |
---|
10 | ! the Free Software Foundation, either version 3 of the License, or * |
---|
11 | ! (at your option) any later version. * |
---|
12 | ! * |
---|
13 | ! FLEXPART is distributed in the hope that it will be useful, * |
---|
14 | ! but WITHOUT ANY WARRANTY; without even the implied warranty of * |
---|
15 | ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
---|
16 | ! GNU General Public License for more details. * |
---|
17 | ! * |
---|
18 | ! You should have received a copy of the GNU General Public License * |
---|
19 | ! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. * |
---|
20 | !********************************************************************** |
---|
21 | |
---|
22 | subroutine convmix(itime) |
---|
23 | ! i |
---|
24 | !************************************************************** |
---|
25 | !handles all the calculations related to convective mixing |
---|
26 | !Petra Seibert, Bernd C. Krueger, Feb 2001 |
---|
27 | !nested grids included, Bernd C. Krueger, May 2001 |
---|
28 | ! |
---|
29 | !Changes by Caroline Forster, April 2004 - February 2005: |
---|
30 | ! convmix called every lsynctime seconds |
---|
31 | !CHANGES by A. Stohl: |
---|
32 | ! various run-time optimizations - February 2005 |
---|
33 | !CHANGES by C. Forster, November 2005, NCEP GFS version |
---|
34 | ! in the ECMWF version convection is calculated on the |
---|
35 | ! original eta-levels |
---|
36 | ! in the GFS version convection is calculated on the |
---|
37 | ! FLEXPART levels |
---|
38 | !************************************************************** |
---|
39 | |
---|
40 | use par_mod |
---|
41 | use com_mod |
---|
42 | use conv_mod |
---|
43 | |
---|
44 | implicit none |
---|
45 | |
---|
46 | integer :: igr,igrold, ipart, itime, ix, j, inest |
---|
47 | integer :: ipconv |
---|
48 | integer :: jy, kpart, ktop, ngrid,kz |
---|
49 | integer :: igrid(maxpart), ipoint(maxpart), igridn(maxpart,maxnests) |
---|
50 | ! itime [s] current time |
---|
51 | ! igrid(maxpart) horizontal grid position of each particle |
---|
52 | ! igridn(maxpart,maxnests) dto. for nested grids |
---|
53 | ! ipoint(maxpart) pointer to access particles according to grid position |
---|
54 | |
---|
55 | logical :: lconv |
---|
56 | real :: x, y, xtn,ytn, ztold, delt |
---|
57 | real :: dt1,dt2,dtt |
---|
58 | integer :: mind1,mind2 |
---|
59 | ! dt1,dt2,dtt,mind1,mind2 variables used for time interpolation |
---|
60 | integer :: itage,nage |
---|
61 | |
---|
62 | !monitoring variables |
---|
63 | !real sumconv,sumall |
---|
64 | |
---|
65 | |
---|
66 | ! Calculate auxiliary variables for time interpolation |
---|
67 | !***************************************************** |
---|
68 | |
---|
69 | dt1=real(itime-memtime(1)) |
---|
70 | dt2=real(memtime(2)-itime) |
---|
71 | dtt=1./(dt1+dt2) |
---|
72 | mind1=memind(1) |
---|
73 | mind2=memind(2) |
---|
74 | delt=real(abs(lsynctime)) |
---|
75 | |
---|
76 | |
---|
77 | lconv = .false. |
---|
78 | |
---|
79 | ! if no particles are present return after initialization |
---|
80 | !******************************************************** |
---|
81 | |
---|
82 | if (numpart.le.0) return |
---|
83 | |
---|
84 | ! Assign igrid and igridn, which are pseudo grid numbers indicating particles |
---|
85 | ! that are outside the part of the grid under consideration |
---|
86 | ! (e.g. particles near the poles or particles in other nests). |
---|
87 | ! Do this for all nests but use only the innermost nest; for all others |
---|
88 | ! igrid shall be -1 |
---|
89 | ! Also, initialize index vector ipoint |
---|
90 | !************************************************************************ |
---|
91 | |
---|
92 | do ipart=1,numpart |
---|
93 | igrid(ipart)=-1 |
---|
94 | do j=numbnests,1,-1 |
---|
95 | igridn(ipart,j)=-1 |
---|
96 | end do |
---|
97 | ipoint(ipart)=ipart |
---|
98 | ! do not consider particles that are (yet) not part of simulation |
---|
99 | if (itra1(ipart).ne.itime) goto 20 |
---|
100 | x = xtra1(ipart) |
---|
101 | y = ytra1(ipart) |
---|
102 | |
---|
103 | ! Determine which nesting level to be used |
---|
104 | !********************************************************** |
---|
105 | |
---|
106 | ngrid=0 |
---|
107 | do j=numbnests,1,-1 |
---|
108 | if ( x.gt.xln(j) .and. x.lt.xrn(j) .and. & |
---|
109 | y.gt.yln(j) .and. y.lt.yrn(j) ) then |
---|
110 | ngrid=j |
---|
111 | goto 23 |
---|
112 | endif |
---|
113 | end do |
---|
114 | 23 continue |
---|
115 | |
---|
116 | ! Determine nested grid coordinates |
---|
117 | !********************************** |
---|
118 | |
---|
119 | if (ngrid.gt.0) then |
---|
120 | ! nested grids |
---|
121 | xtn=(x-xln(ngrid))*xresoln(ngrid) |
---|
122 | ytn=(y-yln(ngrid))*yresoln(ngrid) |
---|
123 | ix=nint(xtn) |
---|
124 | jy=nint(ytn) |
---|
125 | igridn(ipart,ngrid) = 1 + jy*nxn(ngrid) + ix |
---|
126 | else if(ngrid.eq.0) then |
---|
127 | ! mother grid |
---|
128 | ix=nint(x) |
---|
129 | jy=nint(y) |
---|
130 | igrid(ipart) = 1 + jy*nx + ix |
---|
131 | endif |
---|
132 | |
---|
133 | 20 continue |
---|
134 | end do |
---|
135 | |
---|
136 | !sumall = 0. |
---|
137 | !sumconv = 0. |
---|
138 | |
---|
139 | !***************************************************************************** |
---|
140 | ! 1. Now, do everything for the mother domain and, later, for all of the nested domains |
---|
141 | ! While all particles have to be considered for redistribution, the Emanuel convection |
---|
142 | ! scheme only needs to be called once for every grid column where particles are present. |
---|
143 | ! Therefore, particles are sorted according to their grid position. Whenever a new grid |
---|
144 | ! cell is encountered by looping through the sorted particles, the convection scheme is called. |
---|
145 | !***************************************************************************** |
---|
146 | |
---|
147 | ! sort particles according to horizontal position and calculate index vector IPOINT |
---|
148 | |
---|
149 | call sort2(numpart,igrid,ipoint) |
---|
150 | |
---|
151 | ! Now visit all grid columns where particles are present |
---|
152 | ! by going through the sorted particles |
---|
153 | |
---|
154 | igrold = -1 |
---|
155 | do kpart=1,numpart |
---|
156 | igr = igrid(kpart) |
---|
157 | if (igr .eq. -1) goto 50 |
---|
158 | ipart = ipoint(kpart) |
---|
159 | ! sumall = sumall + 1 |
---|
160 | if (igr .ne. igrold) then |
---|
161 | ! we are in a new grid column |
---|
162 | jy = (igr-1)/nx |
---|
163 | ix = igr - jy*nx - 1 |
---|
164 | |
---|
165 | ! Interpolate all meteorological data needed for the convection scheme |
---|
166 | psconv=(ps(ix,jy,1,mind1)*dt2+ps(ix,jy,1,mind2)*dt1)*dtt |
---|
167 | tt2conv=(tt2(ix,jy,1,mind1)*dt2+tt2(ix,jy,1,mind2)*dt1)*dtt |
---|
168 | td2conv=(td2(ix,jy,1,mind1)*dt2+td2(ix,jy,1,mind2)*dt1)*dtt |
---|
169 | !!$ do kz=1,nconvlev+1 !old |
---|
170 | do kz=1,nuvz-1 !bugfix |
---|
171 | pconv(kz)=(pplev(ix,jy,kz,mind1)*dt2+ & |
---|
172 | pplev(ix,jy,kz,mind2)*dt1)*dtt |
---|
173 | tconv(kz)=(tt(ix,jy,kz,mind1)*dt2+ & |
---|
174 | tt(ix,jy,kz,mind2)*dt1)*dtt |
---|
175 | qconv(kz)=(qv(ix,jy,kz,mind1)*dt2+ & |
---|
176 | qv(ix,jy,kz,mind2)*dt1)*dtt |
---|
177 | end do |
---|
178 | |
---|
179 | ! Calculate translocation matrix |
---|
180 | call calcmatrix(lconv,delt,cbaseflux(ix,jy)) |
---|
181 | igrold = igr |
---|
182 | ktop = 0 |
---|
183 | endif |
---|
184 | |
---|
185 | ! treat particle only if column has convection |
---|
186 | if (lconv .eqv. .true.) then |
---|
187 | ! assign new vertical position to particle |
---|
188 | |
---|
189 | ztold=ztra1(ipart) |
---|
190 | call redist(ipart,ktop,ipconv) |
---|
191 | ! if (ipconv.le.0) sumconv = sumconv+1 |
---|
192 | |
---|
193 | ! Calculate the gross fluxes across layer interfaces |
---|
194 | !*************************************************** |
---|
195 | |
---|
196 | if (iflux.eq.1) then |
---|
197 | itage=abs(itra1(ipart)-itramem(ipart)) |
---|
198 | do nage=1,nageclass |
---|
199 | if (itage.lt.lage(nage)) goto 37 |
---|
200 | end do |
---|
201 | 37 continue |
---|
202 | |
---|
203 | if (nage.le.nageclass) & |
---|
204 | call calcfluxes(nage,ipart,real(xtra1(ipart)), & |
---|
205 | real(ytra1(ipart)),ztold) |
---|
206 | endif |
---|
207 | |
---|
208 | endif !(lconv .eqv. .true) |
---|
209 | 50 continue |
---|
210 | end do |
---|
211 | |
---|
212 | |
---|
213 | !***************************************************************************** |
---|
214 | ! 2. Nested domains |
---|
215 | !***************************************************************************** |
---|
216 | |
---|
217 | ! sort particles according to horizontal position and calculate index vector IPOINT |
---|
218 | |
---|
219 | do inest=1,numbnests |
---|
220 | do ipart=1,numpart |
---|
221 | ipoint(ipart)=ipart |
---|
222 | igrid(ipart) = igridn(ipart,inest) |
---|
223 | enddo |
---|
224 | call sort2(numpart,igrid,ipoint) |
---|
225 | |
---|
226 | ! Now visit all grid columns where particles are present |
---|
227 | ! by going through the sorted particles |
---|
228 | |
---|
229 | igrold = -1 |
---|
230 | do kpart=1,numpart |
---|
231 | igr = igrid(kpart) |
---|
232 | if (igr .eq. -1) goto 60 |
---|
233 | ipart = ipoint(kpart) |
---|
234 | ! sumall = sumall + 1 |
---|
235 | if (igr .ne. igrold) then |
---|
236 | ! we are in a new grid column |
---|
237 | jy = (igr-1)/nxn(inest) |
---|
238 | ix = igr - jy*nxn(inest) - 1 |
---|
239 | |
---|
240 | ! Interpolate all meteorological data needed for the convection scheme |
---|
241 | psconv=(psn(ix,jy,1,mind1,inest)*dt2+ & |
---|
242 | psn(ix,jy,1,mind2,inest)*dt1)*dtt |
---|
243 | tt2conv=(tt2n(ix,jy,1,mind1,inest)*dt2+ & |
---|
244 | tt2n(ix,jy,1,mind2,inest)*dt1)*dtt |
---|
245 | td2conv=(td2n(ix,jy,1,mind1,inest)*dt2+ & |
---|
246 | td2n(ix,jy,1,mind2,inest)*dt1)*dtt |
---|
247 | !!$ do kz=1,nconvlev+1 !old |
---|
248 | do kz=1,nuvz-1 !bugfix |
---|
249 | tconv(kz)=(tthn(ix,jy,kz+1,mind1,inest)*dt2+ & |
---|
250 | tthn(ix,jy,kz+1,mind2,inest)*dt1)*dtt |
---|
251 | qconv(kz)=(qvhn(ix,jy,kz+1,mind1,inest)*dt2+ & |
---|
252 | qvhn(ix,jy,kz+1,mind2,inest)*dt1)*dtt |
---|
253 | end do |
---|
254 | |
---|
255 | ! calculate translocation matrix |
---|
256 | !******************************* |
---|
257 | call calcmatrix(lconv,delt,cbasefluxn(ix,jy,inest)) |
---|
258 | igrold = igr |
---|
259 | ktop = 0 |
---|
260 | endif |
---|
261 | |
---|
262 | ! treat particle only if column has convection |
---|
263 | if (lconv .eqv. .true.) then |
---|
264 | ! assign new vertical position to particle |
---|
265 | ztold=ztra1(ipart) |
---|
266 | call redist(ipart,ktop,ipconv) |
---|
267 | ! if (ipconv.le.0) sumconv = sumconv+1 |
---|
268 | |
---|
269 | ! Calculate the gross fluxes across layer interfaces |
---|
270 | !*************************************************** |
---|
271 | |
---|
272 | if (iflux.eq.1) then |
---|
273 | itage=abs(itra1(ipart)-itramem(ipart)) |
---|
274 | do nage=1,nageclass |
---|
275 | if (itage.lt.lage(nage)) goto 47 |
---|
276 | end do |
---|
277 | 47 continue |
---|
278 | |
---|
279 | if (nage.le.nageclass) & |
---|
280 | call calcfluxes(nage,ipart,real(xtra1(ipart)), & |
---|
281 | real(ytra1(ipart)),ztold) |
---|
282 | endif |
---|
283 | |
---|
284 | endif !(lconv .eqv. .true.) |
---|
285 | |
---|
286 | |
---|
287 | 60 continue |
---|
288 | end do |
---|
289 | end do |
---|
290 | !-------------------------------------------------------------------------- |
---|
291 | !write(*,*)'############################################' |
---|
292 | !write(*,*)'TIME=', |
---|
293 | ! & itime |
---|
294 | !write(*,*)'fraction of particles under convection', |
---|
295 | ! & sumconv/(sumall+0.001) |
---|
296 | !write(*,*)'total number of particles', |
---|
297 | ! & sumall |
---|
298 | !write(*,*)'number of particles under convection', |
---|
299 | ! & sumconv |
---|
300 | !write(*,*)'############################################' |
---|
301 | |
---|
302 | return |
---|
303 | end subroutine convmix |
---|