1 | !********************************************************************** |
---|
2 | ! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 * |
---|
3 | ! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, * |
---|
4 | ! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann * |
---|
5 | ! * |
---|
6 | ! This file is part of FLEXPART. * |
---|
7 | ! * |
---|
8 | ! FLEXPART is free software: you can redistribute it and/or modify * |
---|
9 | ! it under the terms of the GNU General Public License as published by* |
---|
10 | ! the Free Software Foundation, either version 3 of the License, or * |
---|
11 | ! (at your option) any later version. * |
---|
12 | ! * |
---|
13 | ! FLEXPART is distributed in the hope that it will be useful, * |
---|
14 | ! but WITHOUT ANY WARRANTY; without even the implied warranty of * |
---|
15 | ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
---|
16 | ! GNU General Public License for more details. * |
---|
17 | ! * |
---|
18 | ! You should have received a copy of the GNU General Public License * |
---|
19 | ! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. * |
---|
20 | !********************************************************************** |
---|
21 | |
---|
22 | subroutine concoutput_nest(itime,outnum) |
---|
23 | ! i i |
---|
24 | !***************************************************************************** |
---|
25 | ! * |
---|
26 | ! Output of the concentration grid and the receptor concentrations. * |
---|
27 | ! * |
---|
28 | ! Author: A. Stohl * |
---|
29 | ! * |
---|
30 | ! 24 May 1995 * |
---|
31 | ! * |
---|
32 | ! 13 April 1999, Major update: if output size is smaller, dump output * |
---|
33 | ! in sparse matrix format; additional output of * |
---|
34 | ! uncertainty * |
---|
35 | ! * |
---|
36 | ! 05 April 2000, Major update: output of age classes; output for backward* |
---|
37 | ! runs is time spent in grid cell times total mass of * |
---|
38 | ! species. * |
---|
39 | ! * |
---|
40 | ! 17 February 2002, Appropriate dimensions for backward and forward runs * |
---|
41 | ! are now specified in file par_mod * |
---|
42 | ! * |
---|
43 | ! June 2006, write grid in sparse matrix with a single write command * |
---|
44 | ! in order to save disk space * |
---|
45 | ! * |
---|
46 | ! 2008 new sparse matrix format * |
---|
47 | ! * |
---|
48 | !***************************************************************************** |
---|
49 | ! * |
---|
50 | ! Variables: * |
---|
51 | ! outnum number of samples * |
---|
52 | ! ncells number of cells with non-zero concentrations * |
---|
53 | ! sparse .true. if in sparse matrix format, else .false. * |
---|
54 | ! tot_mu 1 for forward, initial mass mixing ration for backw. runs * |
---|
55 | ! * |
---|
56 | !***************************************************************************** |
---|
57 | |
---|
58 | use unc_mod |
---|
59 | use point_mod |
---|
60 | use outg_mod |
---|
61 | use par_mod |
---|
62 | use com_mod |
---|
63 | |
---|
64 | implicit none |
---|
65 | |
---|
66 | real(kind=dp) :: jul |
---|
67 | integer :: itime,i,ix,jy,kz,ks,kp,l,iix,jjy,kzz,nage,jjjjmmdd,ihmmss |
---|
68 | integer :: sp_count_i,sp_count_r |
---|
69 | real :: sp_fact |
---|
70 | real :: outnum,densityoutrecept(maxreceptor),xl,yl |
---|
71 | |
---|
72 | !real densityoutgrid(0:numxgrid-1,0:numygrid-1,numzgrid), |
---|
73 | ! +grid(0:numxgrid-1,0:numygrid-1,numzgrid,maxspec,maxpointspec_act, |
---|
74 | ! + maxageclass) |
---|
75 | !real wetgrid(0:numxgrid-1,0:numygrid-1,maxspec,maxpointspec_act, |
---|
76 | ! + maxageclass) |
---|
77 | !real drygrid(0:numxgrid-1,0:numygrid-1,maxspec, |
---|
78 | ! + maxpointspec_act,maxageclass) |
---|
79 | !real gridsigma(0:numxgrid-1,0:numygrid-1,numzgrid,maxspec, |
---|
80 | ! + maxpointspec_act,maxageclass), |
---|
81 | ! + drygridsigma(0:numxgrid-1,0:numygrid-1,maxspec, |
---|
82 | ! + maxpointspec_act,maxageclass), |
---|
83 | ! + wetgridsigma(0:numxgrid-1,0:numygrid-1,maxspec, |
---|
84 | ! + maxpointspec_act,maxageclass) |
---|
85 | !real factor(0:numxgrid-1,0:numygrid-1,numzgrid) |
---|
86 | !real sparse_dump_r(numxgrid*numygrid*numzgrid) |
---|
87 | !integer sparse_dump_i(numxgrid*numygrid*numzgrid) |
---|
88 | |
---|
89 | !real sparse_dump_u(numxgrid*numygrid*numzgrid) |
---|
90 | real :: auxgrid(nclassunc) |
---|
91 | real :: halfheight,dz,dz1,dz2,tot_mu(maxspec,maxpointspec_act) |
---|
92 | real,parameter :: smallnum = tiny(0.0) ! smallest number that can be handled |
---|
93 | real,parameter :: weightair=28.97 |
---|
94 | logical :: sp_zer |
---|
95 | character :: adate*8,atime*6 |
---|
96 | character(len=3) :: anspec |
---|
97 | |
---|
98 | |
---|
99 | ! Determine current calendar date, needed for the file name |
---|
100 | !********************************************************** |
---|
101 | |
---|
102 | jul=bdate+real(itime,kind=dp)/86400._dp |
---|
103 | call caldate(jul,jjjjmmdd,ihmmss) |
---|
104 | write(adate,'(i8.8)') jjjjmmdd |
---|
105 | write(atime,'(i6.6)') ihmmss |
---|
106 | |
---|
107 | |
---|
108 | ! For forward simulations, output fields have dimension MAXSPEC, |
---|
109 | ! for backward simulations, output fields have dimension MAXPOINT. |
---|
110 | ! Thus, make loops either about nspec, or about numpoint |
---|
111 | !***************************************************************** |
---|
112 | |
---|
113 | |
---|
114 | if (ldirect.eq.1) then |
---|
115 | do ks=1,nspec |
---|
116 | do kp=1,maxpointspec_act |
---|
117 | tot_mu(ks,kp)=1 |
---|
118 | end do |
---|
119 | end do |
---|
120 | else |
---|
121 | do ks=1,nspec |
---|
122 | do kp=1,maxpointspec_act |
---|
123 | tot_mu(ks,kp)=xmass(kp,ks) |
---|
124 | end do |
---|
125 | end do |
---|
126 | endif |
---|
127 | |
---|
128 | |
---|
129 | !******************************************************************* |
---|
130 | ! Compute air density: sufficiently accurate to take it |
---|
131 | ! from coarse grid at some time |
---|
132 | ! Determine center altitude of output layer, and interpolate density |
---|
133 | ! data to that altitude |
---|
134 | !******************************************************************* |
---|
135 | |
---|
136 | do kz=1,numzgrid |
---|
137 | if (kz.eq.1) then |
---|
138 | halfheight=outheight(1)/2. |
---|
139 | else |
---|
140 | halfheight=(outheight(kz)+outheight(kz-1))/2. |
---|
141 | endif |
---|
142 | do kzz=2,nz |
---|
143 | if ((height(kzz-1).lt.halfheight).and. & |
---|
144 | (height(kzz).gt.halfheight)) goto 46 |
---|
145 | end do |
---|
146 | 46 kzz=max(min(kzz,nz),2) |
---|
147 | dz1=halfheight-height(kzz-1) |
---|
148 | dz2=height(kzz)-halfheight |
---|
149 | dz=dz1+dz2 |
---|
150 | do jy=0,numygridn-1 |
---|
151 | do ix=0,numxgridn-1 |
---|
152 | xl=outlon0n+real(ix)*dxoutn |
---|
153 | yl=outlat0n+real(jy)*dyoutn |
---|
154 | xl=(xl-xlon0)/dx |
---|
155 | yl=(yl-ylat0)/dy |
---|
156 | iix=max(min(nint(xl),nxmin1),0) |
---|
157 | jjy=max(min(nint(yl),nymin1),0) |
---|
158 | densityoutgrid(ix,jy,kz)=(rho(iix,jjy,kzz,2)*dz1+ & |
---|
159 | rho(iix,jjy,kzz-1,2)*dz2)/dz |
---|
160 | end do |
---|
161 | end do |
---|
162 | end do |
---|
163 | |
---|
164 | do i=1,numreceptor |
---|
165 | xl=xreceptor(i) |
---|
166 | yl=yreceptor(i) |
---|
167 | iix=max(min(nint(xl),nxmin1),0) |
---|
168 | jjy=max(min(nint(yl),nymin1),0) |
---|
169 | densityoutrecept(i)=rho(iix,jjy,1,2) |
---|
170 | end do |
---|
171 | |
---|
172 | |
---|
173 | ! Output is different for forward and backward simulations |
---|
174 | do kz=1,numzgrid |
---|
175 | do jy=0,numygridn-1 |
---|
176 | do ix=0,numxgridn-1 |
---|
177 | if (ldirect.eq.1) then |
---|
178 | factor3d(ix,jy,kz)=1.e12/volumen(ix,jy,kz)/outnum |
---|
179 | else |
---|
180 | factor3d(ix,jy,kz)=real(abs(loutaver))/outnum |
---|
181 | endif |
---|
182 | end do |
---|
183 | end do |
---|
184 | end do |
---|
185 | |
---|
186 | !********************************************************************* |
---|
187 | ! Determine the standard deviation of the mean concentration or mixing |
---|
188 | ! ratio (uncertainty of the output) and the dry and wet deposition |
---|
189 | !********************************************************************* |
---|
190 | |
---|
191 | do ks=1,nspec |
---|
192 | |
---|
193 | write(anspec,'(i3.3)') ks |
---|
194 | if ((iout.eq.1).or.(iout.eq.3).or.(iout.eq.5)) then |
---|
195 | if (ldirect.eq.1) then |
---|
196 | open(unitoutgrid,file=path(2)(1:length(2))//'grid_conc_nest_' & |
---|
197 | //adate// & |
---|
198 | atime//'_'//anspec,form='unformatted') |
---|
199 | else |
---|
200 | open(unitoutgrid,file=path(2)(1:length(2))//'grid_time_nest_' & |
---|
201 | //adate// & |
---|
202 | atime//'_'//anspec,form='unformatted') |
---|
203 | endif |
---|
204 | write(unitoutgrid) itime |
---|
205 | endif |
---|
206 | |
---|
207 | if ((iout.eq.2).or.(iout.eq.3)) then ! mixing ratio |
---|
208 | open(unitoutgridppt,file=path(2)(1:length(2))//'grid_pptv_nest_' & |
---|
209 | //adate// & |
---|
210 | atime//'_'//anspec,form='unformatted') |
---|
211 | |
---|
212 | write(unitoutgridppt) itime |
---|
213 | endif |
---|
214 | |
---|
215 | do kp=1,maxpointspec_act |
---|
216 | do nage=1,nageclass |
---|
217 | |
---|
218 | do jy=0,numygridn-1 |
---|
219 | do ix=0,numxgridn-1 |
---|
220 | |
---|
221 | ! WET DEPOSITION |
---|
222 | if ((WETDEP).and.(ldirect.gt.0)) then |
---|
223 | do l=1,nclassunc |
---|
224 | auxgrid(l)=wetgriduncn(ix,jy,ks,kp,l,nage) |
---|
225 | end do |
---|
226 | call mean(auxgrid,wetgrid(ix,jy), & |
---|
227 | wetgridsigma(ix,jy),nclassunc) |
---|
228 | ! Multiply by number of classes to get total concentration |
---|
229 | wetgrid(ix,jy)=wetgrid(ix,jy) & |
---|
230 | *nclassunc |
---|
231 | ! Calculate standard deviation of the mean |
---|
232 | wetgridsigma(ix,jy)= & |
---|
233 | wetgridsigma(ix,jy)* & |
---|
234 | sqrt(real(nclassunc)) |
---|
235 | endif |
---|
236 | |
---|
237 | ! DRY DEPOSITION |
---|
238 | if ((DRYDEP).and.(ldirect.gt.0)) then |
---|
239 | do l=1,nclassunc |
---|
240 | auxgrid(l)=drygriduncn(ix,jy,ks,kp,l,nage) |
---|
241 | end do |
---|
242 | call mean(auxgrid,drygrid(ix,jy), & |
---|
243 | drygridsigma(ix,jy),nclassunc) |
---|
244 | ! Multiply by number of classes to get total concentration |
---|
245 | drygrid(ix,jy)=drygrid(ix,jy)* & |
---|
246 | nclassunc |
---|
247 | ! Calculate standard deviation of the mean |
---|
248 | drygridsigma(ix,jy)= & |
---|
249 | drygridsigma(ix,jy)* & |
---|
250 | sqrt(real(nclassunc)) |
---|
251 | endif |
---|
252 | |
---|
253 | ! CONCENTRATION OR MIXING RATIO |
---|
254 | do kz=1,numzgrid |
---|
255 | do l=1,nclassunc |
---|
256 | auxgrid(l)=griduncn(ix,jy,kz,ks,kp,l,nage) |
---|
257 | end do |
---|
258 | call mean(auxgrid,grid(ix,jy,kz), & |
---|
259 | gridsigma(ix,jy,kz),nclassunc) |
---|
260 | ! Multiply by number of classes to get total concentration |
---|
261 | grid(ix,jy,kz)= & |
---|
262 | grid(ix,jy,kz)*nclassunc |
---|
263 | ! Calculate standard deviation of the mean |
---|
264 | gridsigma(ix,jy,kz)= & |
---|
265 | gridsigma(ix,jy,kz)* & |
---|
266 | sqrt(real(nclassunc)) |
---|
267 | end do |
---|
268 | end do |
---|
269 | end do |
---|
270 | |
---|
271 | |
---|
272 | !******************************************************************* |
---|
273 | ! Generate output: may be in concentration (ng/m3) or in mixing |
---|
274 | ! ratio (ppt) or both |
---|
275 | ! Output the position and the values alternated multiplied by |
---|
276 | ! 1 or -1, first line is number of values, number of positions |
---|
277 | ! For backward simulations, the unit is seconds, stored in grid_time |
---|
278 | !******************************************************************* |
---|
279 | |
---|
280 | ! Concentration output |
---|
281 | !********************* |
---|
282 | if ((iout.eq.1).or.(iout.eq.3).or.(iout.eq.5)) then |
---|
283 | |
---|
284 | ! Wet deposition |
---|
285 | sp_count_i=0 |
---|
286 | sp_count_r=0 |
---|
287 | sp_fact=-1. |
---|
288 | sp_zer=.true. |
---|
289 | if ((ldirect.eq.1).and.(WETDEP)) then |
---|
290 | do jy=0,numygridn-1 |
---|
291 | do ix=0,numxgridn-1 |
---|
292 | !oncentraion greater zero |
---|
293 | if (wetgrid(ix,jy).gt.smallnum) then |
---|
294 | if (sp_zer.eqv..true.) then ! first non zero value |
---|
295 | sp_count_i=sp_count_i+1 |
---|
296 | sparse_dump_i(sp_count_i)=ix+jy*numxgridn |
---|
297 | sp_zer=.false. |
---|
298 | sp_fact=sp_fact*(-1.) |
---|
299 | endif |
---|
300 | sp_count_r=sp_count_r+1 |
---|
301 | sparse_dump_r(sp_count_r)= & |
---|
302 | sp_fact*1.e12*wetgrid(ix,jy)/arean(ix,jy) |
---|
303 | ! sparse_dump_u(sp_count_r)= |
---|
304 | !+ 1.e12*wetgridsigma(ix,jy,ks,kp,nage)/area(ix,jy) |
---|
305 | else ! concentration is zero |
---|
306 | sp_zer=.true. |
---|
307 | endif |
---|
308 | end do |
---|
309 | end do |
---|
310 | else |
---|
311 | sp_count_i=0 |
---|
312 | sp_count_r=0 |
---|
313 | endif |
---|
314 | write(unitoutgrid) sp_count_i |
---|
315 | write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i) |
---|
316 | write(unitoutgrid) sp_count_r |
---|
317 | write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r) |
---|
318 | ! write(unitoutgrid) sp_count_u |
---|
319 | ! write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r) |
---|
320 | |
---|
321 | ! Dry deposition |
---|
322 | sp_count_i=0 |
---|
323 | sp_count_r=0 |
---|
324 | sp_fact=-1. |
---|
325 | sp_zer=.true. |
---|
326 | if ((ldirect.eq.1).and.(DRYDEP)) then |
---|
327 | do jy=0,numygridn-1 |
---|
328 | do ix=0,numxgridn-1 |
---|
329 | if (drygrid(ix,jy).gt.smallnum) then |
---|
330 | if (sp_zer.eqv..true.) then ! first non zero value |
---|
331 | sp_count_i=sp_count_i+1 |
---|
332 | sparse_dump_i(sp_count_i)=ix+jy*numxgridn |
---|
333 | sp_zer=.false. |
---|
334 | sp_fact=sp_fact*(-1.) |
---|
335 | endif |
---|
336 | sp_count_r=sp_count_r+1 |
---|
337 | sparse_dump_r(sp_count_r)= & |
---|
338 | sp_fact* & |
---|
339 | 1.e12*drygrid(ix,jy)/arean(ix,jy) |
---|
340 | ! sparse_dump_u(sp_count_r)= |
---|
341 | !+ 1.e12*drygridsigma(ix,jy,ks,kp,nage)/area(ix,jy) |
---|
342 | else ! concentration is zero |
---|
343 | sp_zer=.true. |
---|
344 | endif |
---|
345 | end do |
---|
346 | end do |
---|
347 | else |
---|
348 | sp_count_i=0 |
---|
349 | sp_count_r=0 |
---|
350 | endif |
---|
351 | write(unitoutgrid) sp_count_i |
---|
352 | write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i) |
---|
353 | write(unitoutgrid) sp_count_r |
---|
354 | write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r) |
---|
355 | ! write(*,*) sp_count_u |
---|
356 | ! write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r) |
---|
357 | |
---|
358 | |
---|
359 | |
---|
360 | ! Concentrations |
---|
361 | sp_count_i=0 |
---|
362 | sp_count_r=0 |
---|
363 | sp_fact=-1. |
---|
364 | sp_zer=.true. |
---|
365 | do kz=1,numzgrid |
---|
366 | do jy=0,numygridn-1 |
---|
367 | do ix=0,numxgridn-1 |
---|
368 | if (grid(ix,jy,kz).gt.smallnum) then |
---|
369 | if (sp_zer.eqv..true.) then ! first non zero value |
---|
370 | sp_count_i=sp_count_i+1 |
---|
371 | sparse_dump_i(sp_count_i)= & |
---|
372 | ix+jy*numxgridn+kz*numxgridn*numygridn |
---|
373 | sp_zer=.false. |
---|
374 | sp_fact=sp_fact*(-1.) |
---|
375 | endif |
---|
376 | sp_count_r=sp_count_r+1 |
---|
377 | sparse_dump_r(sp_count_r)= & |
---|
378 | sp_fact* & |
---|
379 | grid(ix,jy,kz)* & |
---|
380 | factor3d(ix,jy,kz)/tot_mu(ks,kp) |
---|
381 | ! if ((factor(ix,jy,kz)/tot_mu(ks,kp)).eq.0) |
---|
382 | ! + write (*,*) factor(ix,jy,kz),tot_mu(ks,kp),ks,kp |
---|
383 | ! sparse_dump_u(sp_count_r)= |
---|
384 | !+ ,gridsigma(ix,jy,kz,ks,kp,nage)* |
---|
385 | !+ factor(ix,jy,kz)/tot_mu(ks,kp) |
---|
386 | else ! concentration is zero |
---|
387 | sp_zer=.true. |
---|
388 | endif |
---|
389 | end do |
---|
390 | end do |
---|
391 | end do |
---|
392 | write(unitoutgrid) sp_count_i |
---|
393 | write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i) |
---|
394 | write(unitoutgrid) sp_count_r |
---|
395 | write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r) |
---|
396 | ! write(unitoutgrid) sp_count_u |
---|
397 | ! write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r) |
---|
398 | |
---|
399 | |
---|
400 | |
---|
401 | endif ! concentration output |
---|
402 | |
---|
403 | ! Mixing ratio output |
---|
404 | !******************** |
---|
405 | |
---|
406 | if ((iout.eq.2).or.(iout.eq.3)) then ! mixing ratio |
---|
407 | |
---|
408 | ! Wet deposition |
---|
409 | sp_count_i=0 |
---|
410 | sp_count_r=0 |
---|
411 | sp_fact=-1. |
---|
412 | sp_zer=.true. |
---|
413 | if ((ldirect.eq.1).and.(WETDEP)) then |
---|
414 | do jy=0,numygridn-1 |
---|
415 | do ix=0,numxgridn-1 |
---|
416 | if (wetgrid(ix,jy).gt.smallnum) then |
---|
417 | if (sp_zer.eqv..true.) then ! first non zero value |
---|
418 | sp_count_i=sp_count_i+1 |
---|
419 | sparse_dump_i(sp_count_i)= & |
---|
420 | ix+jy*numxgridn |
---|
421 | sp_zer=.false. |
---|
422 | sp_fact=sp_fact*(-1.) |
---|
423 | endif |
---|
424 | sp_count_r=sp_count_r+1 |
---|
425 | sparse_dump_r(sp_count_r)= & |
---|
426 | sp_fact* & |
---|
427 | 1.e12*wetgrid(ix,jy)/arean(ix,jy) |
---|
428 | ! sparse_dump_u(sp_count_r)= |
---|
429 | ! + ,1.e12*wetgridsigma(ix,jy,ks,kp,nage)/area(ix,jy) |
---|
430 | else ! concentration is zero |
---|
431 | sp_zer=.true. |
---|
432 | endif |
---|
433 | end do |
---|
434 | end do |
---|
435 | else |
---|
436 | sp_count_i=0 |
---|
437 | sp_count_r=0 |
---|
438 | endif |
---|
439 | write(unitoutgridppt) sp_count_i |
---|
440 | write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i) |
---|
441 | write(unitoutgridppt) sp_count_r |
---|
442 | write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r) |
---|
443 | ! write(unitoutgridppt) sp_count_u |
---|
444 | ! write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r) |
---|
445 | |
---|
446 | |
---|
447 | ! Dry deposition |
---|
448 | sp_count_i=0 |
---|
449 | sp_count_r=0 |
---|
450 | sp_fact=-1. |
---|
451 | sp_zer=.true. |
---|
452 | if ((ldirect.eq.1).and.(DRYDEP)) then |
---|
453 | do jy=0,numygridn-1 |
---|
454 | do ix=0,numxgridn-1 |
---|
455 | if (drygrid(ix,jy).gt.smallnum) then |
---|
456 | if (sp_zer.eqv..true.) then ! first non zero value |
---|
457 | sp_count_i=sp_count_i+1 |
---|
458 | sparse_dump_i(sp_count_i)= & |
---|
459 | ix+jy*numxgridn |
---|
460 | sp_zer=.false. |
---|
461 | sp_fact=sp_fact*(-1) |
---|
462 | endif |
---|
463 | sp_count_r=sp_count_r+1 |
---|
464 | sparse_dump_r(sp_count_r)= & |
---|
465 | sp_fact* & |
---|
466 | 1.e12*drygrid(ix,jy)/arean(ix,jy) |
---|
467 | ! sparse_dump_u(sp_count_r)= |
---|
468 | ! + ,1.e12*drygridsigma(ix,jy,ks,kp,nage)/area(ix,jy) |
---|
469 | else ! concentration is zero |
---|
470 | sp_zer=.true. |
---|
471 | endif |
---|
472 | end do |
---|
473 | end do |
---|
474 | else |
---|
475 | sp_count_i=0 |
---|
476 | sp_count_r=0 |
---|
477 | endif |
---|
478 | write(unitoutgridppt) sp_count_i |
---|
479 | write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i) |
---|
480 | write(unitoutgridppt) sp_count_r |
---|
481 | write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r) |
---|
482 | ! write(unitoutgridppt) sp_count_u |
---|
483 | ! write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r) |
---|
484 | |
---|
485 | |
---|
486 | ! Mixing ratios |
---|
487 | sp_count_i=0 |
---|
488 | sp_count_r=0 |
---|
489 | sp_fact=-1. |
---|
490 | sp_zer=.true. |
---|
491 | do kz=1,numzgrid |
---|
492 | do jy=0,numygridn-1 |
---|
493 | do ix=0,numxgridn-1 |
---|
494 | if (grid(ix,jy,kz).gt.smallnum) then |
---|
495 | if (sp_zer.eqv..true.) then ! first non zero value |
---|
496 | sp_count_i=sp_count_i+1 |
---|
497 | sparse_dump_i(sp_count_i)= & |
---|
498 | ix+jy*numxgridn+kz*numxgridn*numygridn |
---|
499 | sp_zer=.false. |
---|
500 | sp_fact=sp_fact*(-1.) |
---|
501 | endif |
---|
502 | sp_count_r=sp_count_r+1 |
---|
503 | sparse_dump_r(sp_count_r)= & |
---|
504 | sp_fact* & |
---|
505 | 1.e12*grid(ix,jy,kz) & |
---|
506 | /volumen(ix,jy,kz)/outnum* & |
---|
507 | weightair/weightmolar(ks)/densityoutgrid(ix,jy,kz) |
---|
508 | ! sparse_dump_u(sp_count_r)= |
---|
509 | !+ ,1.e12*gridsigma(ix,jy,kz,ks,kp,nage)/volume(ix,jy,kz)/ |
---|
510 | !+ outnum*weightair/weightmolar(ks)/ |
---|
511 | !+ densityoutgrid(ix,jy,kz) |
---|
512 | else ! concentration is zero |
---|
513 | sp_zer=.true. |
---|
514 | endif |
---|
515 | end do |
---|
516 | end do |
---|
517 | end do |
---|
518 | write(unitoutgridppt) sp_count_i |
---|
519 | write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i) |
---|
520 | write(unitoutgridppt) sp_count_r |
---|
521 | write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r) |
---|
522 | ! write(unitoutgridppt) sp_count_u |
---|
523 | ! write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r) |
---|
524 | |
---|
525 | endif ! output for ppt |
---|
526 | |
---|
527 | end do |
---|
528 | end do |
---|
529 | |
---|
530 | close(unitoutgridppt) |
---|
531 | close(unitoutgrid) |
---|
532 | |
---|
533 | end do |
---|
534 | |
---|
535 | |
---|
536 | |
---|
537 | ! Reinitialization of grid |
---|
538 | !************************* |
---|
539 | |
---|
540 | do ks=1,nspec |
---|
541 | do kp=1,maxpointspec_act |
---|
542 | do i=1,numreceptor |
---|
543 | creceptor(i,ks)=0. |
---|
544 | end do |
---|
545 | do jy=0,numygridn-1 |
---|
546 | do ix=0,numxgridn-1 |
---|
547 | do l=1,nclassunc |
---|
548 | do nage=1,nageclass |
---|
549 | do kz=1,numzgrid |
---|
550 | griduncn(ix,jy,kz,ks,kp,l,nage)=0. |
---|
551 | end do |
---|
552 | end do |
---|
553 | end do |
---|
554 | end do |
---|
555 | end do |
---|
556 | end do |
---|
557 | end do |
---|
558 | |
---|
559 | |
---|
560 | end subroutine concoutput_nest |
---|
561 | |
---|