1 | !********************************************************************** |
---|
2 | ! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 * |
---|
3 | ! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, * |
---|
4 | ! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann * |
---|
5 | ! * |
---|
6 | ! This file is part of FLEXPART. * |
---|
7 | ! * |
---|
8 | ! FLEXPART is free software: you can redistribute it and/or modify * |
---|
9 | ! it under the terms of the GNU General Public License as published by* |
---|
10 | ! the Free Software Foundation, either version 3 of the License, or * |
---|
11 | ! (at your option) any later version. * |
---|
12 | ! * |
---|
13 | ! FLEXPART is distributed in the hope that it will be useful, * |
---|
14 | ! but WITHOUT ANY WARRANTY; without even the implied warranty of * |
---|
15 | ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
---|
16 | ! GNU General Public License for more details. * |
---|
17 | ! * |
---|
18 | ! You should have received a copy of the GNU General Public License * |
---|
19 | ! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. * |
---|
20 | !********************************************************************** |
---|
21 | |
---|
22 | subroutine conccalc(itime,weight) |
---|
23 | ! i i |
---|
24 | !***************************************************************************** |
---|
25 | ! * |
---|
26 | ! Calculation of the concentrations on a regular grid using volume * |
---|
27 | ! sampling * |
---|
28 | ! * |
---|
29 | ! Author: A. Stohl * |
---|
30 | ! * |
---|
31 | ! 24 May 1996 * |
---|
32 | ! * |
---|
33 | ! April 2000: Update to calculate age spectra * |
---|
34 | ! Bug fix to avoid negative conc. at the domain boundaries, * |
---|
35 | ! as suggested by Petra Seibert * |
---|
36 | ! * |
---|
37 | ! 2 July 2002: re-order if-statements in order to optimize CPU time * |
---|
38 | ! * |
---|
39 | ! * |
---|
40 | !***************************************************************************** |
---|
41 | ! * |
---|
42 | ! Variables: * |
---|
43 | ! nspeciesdim = nspec for forward runs, 1 for backward runs * |
---|
44 | ! * |
---|
45 | !***************************************************************************** |
---|
46 | |
---|
47 | use unc_mod |
---|
48 | use outg_mod |
---|
49 | use par_mod |
---|
50 | use com_mod |
---|
51 | |
---|
52 | implicit none |
---|
53 | |
---|
54 | integer :: itime,itage,i,ix,jy,ixp,jyp,kz,ks,n,nage |
---|
55 | integer :: il,ind,indz,indzp,nrelpointer |
---|
56 | real :: rddx,rddy,p1,p2,p3,p4,dz1,dz2,dz |
---|
57 | real :: weight,hx,hy,hz,h,xd,yd,zd,xkern,r2,c(maxspec),ddx,ddy |
---|
58 | real :: rhoprof(2),rhoi |
---|
59 | real :: xl,yl,wx,wy,w |
---|
60 | real,parameter :: factor=.596831, hxmax=6.0, hymax=4.0, hzmax=150. |
---|
61 | |
---|
62 | |
---|
63 | ! For forward simulations, make a loop over the number of species; |
---|
64 | ! for backward simulations, make an additional loop over the |
---|
65 | ! releasepoints |
---|
66 | !*************************************************************************** |
---|
67 | |
---|
68 | |
---|
69 | do i=1,numpart |
---|
70 | if (itra1(i).ne.itime) goto 20 |
---|
71 | |
---|
72 | ! Determine age class of the particle |
---|
73 | itage=abs(itra1(i)-itramem(i)) |
---|
74 | do nage=1,nageclass |
---|
75 | if (itage.lt.lage(nage)) goto 33 |
---|
76 | end do |
---|
77 | 33 continue |
---|
78 | |
---|
79 | |
---|
80 | ! For special runs, interpolate the air density to the particle position |
---|
81 | !************************************************************************ |
---|
82 | !*********************************************************************** |
---|
83 | !AF IND_SOURCE switches between different units for concentrations at the source |
---|
84 | !Af NOTE that in backward simulations the release of particles takes place |
---|
85 | !Af at the receptor and the sampling at the source. |
---|
86 | !Af 1="mass" |
---|
87 | !Af 2="mass mixing ratio" |
---|
88 | !Af IND_RECEPTOR switches between different units for concentrations at the receptor |
---|
89 | !Af 1="mass" |
---|
90 | !Af 2="mass mixing ratio" |
---|
91 | |
---|
92 | !Af switches for the conccalcfile: |
---|
93 | !AF IND_SAMP = 0 : xmass * 1 |
---|
94 | !Af IND_SAMP = -1 : xmass / rho |
---|
95 | |
---|
96 | !Af ind_samp is defined in readcommand.f |
---|
97 | |
---|
98 | if ( ind_samp .eq. -1 ) then |
---|
99 | |
---|
100 | ix=int(xtra1(i)) |
---|
101 | jy=int(ytra1(i)) |
---|
102 | ixp=ix+1 |
---|
103 | jyp=jy+1 |
---|
104 | ddx=xtra1(i)-real(ix) |
---|
105 | ddy=ytra1(i)-real(jy) |
---|
106 | rddx=1.-ddx |
---|
107 | rddy=1.-ddy |
---|
108 | p1=rddx*rddy |
---|
109 | p2=ddx*rddy |
---|
110 | p3=rddx*ddy |
---|
111 | p4=ddx*ddy |
---|
112 | |
---|
113 | do il=2,nz |
---|
114 | if (height(il).gt.ztra1(i)) then |
---|
115 | indz=il-1 |
---|
116 | indzp=il |
---|
117 | goto 6 |
---|
118 | endif |
---|
119 | end do |
---|
120 | 6 continue |
---|
121 | |
---|
122 | dz1=ztra1(i)-height(indz) |
---|
123 | dz2=height(indzp)-ztra1(i) |
---|
124 | dz=1./(dz1+dz2) |
---|
125 | |
---|
126 | ! Take density from 2nd wind field in memory (accurate enough, no time interpolation needed) |
---|
127 | !***************************************************************************** |
---|
128 | do ind=indz,indzp |
---|
129 | rhoprof(ind-indz+1)=p1*rho(ix ,jy ,ind,2) & |
---|
130 | +p2*rho(ixp,jy ,ind,2) & |
---|
131 | +p3*rho(ix ,jyp,ind,2) & |
---|
132 | +p4*rho(ixp,jyp,ind,2) |
---|
133 | end do |
---|
134 | rhoi=(dz1*rhoprof(2)+dz2*rhoprof(1))*dz |
---|
135 | elseif (ind_samp.eq.0) then |
---|
136 | rhoi = 1. |
---|
137 | endif |
---|
138 | |
---|
139 | |
---|
140 | !**************************************************************************** |
---|
141 | ! 1. Evaluate grid concentrations using a uniform kernel of bandwidths dx, dy |
---|
142 | !**************************************************************************** |
---|
143 | |
---|
144 | |
---|
145 | ! For backward simulations, look from which release point the particle comes from |
---|
146 | ! For domain-filling trajectory option, npoint contains a consecutive particle |
---|
147 | ! number, not the release point information. Therefore, nrelpointer is set to 1 |
---|
148 | ! for the domain-filling option. |
---|
149 | !***************************************************************************** |
---|
150 | |
---|
151 | if ((ioutputforeachrelease.eq.0).or.(mdomainfill.eq.1)) then |
---|
152 | nrelpointer=1 |
---|
153 | else |
---|
154 | nrelpointer=npoint(i) |
---|
155 | endif |
---|
156 | |
---|
157 | do kz=1,numzgrid ! determine height of cell |
---|
158 | if (outheight(kz).gt.ztra1(i)) goto 21 |
---|
159 | end do |
---|
160 | 21 continue |
---|
161 | if (kz.le.numzgrid) then ! inside output domain |
---|
162 | |
---|
163 | |
---|
164 | !******************************** |
---|
165 | ! Do everything for mother domain |
---|
166 | !******************************** |
---|
167 | |
---|
168 | xl=(xtra1(i)*dx+xoutshift)/dxout |
---|
169 | yl=(ytra1(i)*dy+youtshift)/dyout |
---|
170 | ix=int(xl) |
---|
171 | if (xl.lt.0.) ix=ix-1 |
---|
172 | jy=int(yl) |
---|
173 | if (yl.lt.0.) jy=jy-1 |
---|
174 | |
---|
175 | ! if (i.eq.10000) write(*,*) itime,xtra1(i),ytra1(i),ztra1(i),xl,yl |
---|
176 | |
---|
177 | |
---|
178 | ! For particles aged less than 3 hours, attribute particle mass to grid cell |
---|
179 | ! it resides in rather than use the kernel, in order to avoid its smoothing effect. |
---|
180 | ! For older particles, use the uniform kernel. |
---|
181 | ! If a particle is close to the domain boundary, do not use the kernel either. |
---|
182 | !***************************************************************************** |
---|
183 | |
---|
184 | if ((itage.lt.10800).or.(xl.lt.0.5).or.(yl.lt.0.5).or. & |
---|
185 | (xl.gt.real(numxgrid-1)-0.5).or. & |
---|
186 | (yl.gt.real(numygrid-1)-0.5)) then ! no kernel, direct attribution to grid cell |
---|
187 | if ((ix.ge.0).and.(jy.ge.0).and.(ix.le.numxgrid-1).and. & |
---|
188 | (jy.le.numygrid-1)) then |
---|
189 | do ks=1,nspec |
---|
190 | gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= & |
---|
191 | gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ & |
---|
192 | xmass1(i,ks)/rhoi*weight |
---|
193 | end do |
---|
194 | endif |
---|
195 | |
---|
196 | else ! attribution via uniform kernel |
---|
197 | |
---|
198 | ddx=xl-real(ix) ! distance to left cell border |
---|
199 | ddy=yl-real(jy) ! distance to lower cell border |
---|
200 | if (ddx.gt.0.5) then |
---|
201 | ixp=ix+1 |
---|
202 | wx=1.5-ddx |
---|
203 | else |
---|
204 | ixp=ix-1 |
---|
205 | wx=0.5+ddx |
---|
206 | endif |
---|
207 | |
---|
208 | if (ddy.gt.0.5) then |
---|
209 | jyp=jy+1 |
---|
210 | wy=1.5-ddy |
---|
211 | else |
---|
212 | jyp=jy-1 |
---|
213 | wy=0.5+ddy |
---|
214 | endif |
---|
215 | |
---|
216 | |
---|
217 | ! Determine mass fractions for four grid points |
---|
218 | !********************************************** |
---|
219 | |
---|
220 | if ((ix.ge.0).and.(ix.le.numxgrid-1)) then |
---|
221 | if ((jy.ge.0).and.(jy.le.numygrid-1)) then |
---|
222 | w=wx*wy |
---|
223 | do ks=1,nspec |
---|
224 | gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= & |
---|
225 | gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ & |
---|
226 | xmass1(i,ks)/rhoi*weight*w |
---|
227 | end do |
---|
228 | endif |
---|
229 | |
---|
230 | if ((jyp.ge.0).and.(jyp.le.numygrid-1)) then |
---|
231 | w=wx*(1.-wy) |
---|
232 | do ks=1,nspec |
---|
233 | gridunc(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)= & |
---|
234 | gridunc(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)+ & |
---|
235 | xmass1(i,ks)/rhoi*weight*w |
---|
236 | end do |
---|
237 | endif |
---|
238 | endif |
---|
239 | |
---|
240 | |
---|
241 | if ((ixp.ge.0).and.(ixp.le.numxgrid-1)) then |
---|
242 | if ((jyp.ge.0).and.(jyp.le.numygrid-1)) then |
---|
243 | w=(1.-wx)*(1.-wy) |
---|
244 | do ks=1,nspec |
---|
245 | gridunc(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)= & |
---|
246 | gridunc(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)+ & |
---|
247 | xmass1(i,ks)/rhoi*weight*w |
---|
248 | end do |
---|
249 | endif |
---|
250 | |
---|
251 | if ((jy.ge.0).and.(jy.le.numygrid-1)) then |
---|
252 | w=(1.-wx)*wy |
---|
253 | do ks=1,nspec |
---|
254 | gridunc(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)= & |
---|
255 | gridunc(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)+ & |
---|
256 | xmass1(i,ks)/rhoi*weight*w |
---|
257 | end do |
---|
258 | endif |
---|
259 | endif |
---|
260 | endif |
---|
261 | |
---|
262 | |
---|
263 | |
---|
264 | !************************************ |
---|
265 | ! Do everything for the nested domain |
---|
266 | !************************************ |
---|
267 | |
---|
268 | if (nested_output.eq.1) then |
---|
269 | xl=(xtra1(i)*dx+xoutshiftn)/dxoutn |
---|
270 | yl=(ytra1(i)*dy+youtshiftn)/dyoutn |
---|
271 | ix=int(xl) |
---|
272 | if (xl.lt.0.) ix=ix-1 |
---|
273 | jy=int(yl) |
---|
274 | if (yl.lt.0.) jy=jy-1 |
---|
275 | |
---|
276 | |
---|
277 | ! For particles aged less than 3 hours, attribute particle mass to grid cell |
---|
278 | ! it resides in rather than use the kernel, in order to avoid its smoothing effect. |
---|
279 | ! For older particles, use the uniform kernel. |
---|
280 | ! If a particle is close to the domain boundary, do not use the kernel either. |
---|
281 | !***************************************************************************** |
---|
282 | |
---|
283 | if ((itage.lt.10800).or.(xl.lt.0.5).or.(yl.lt.0.5).or. & |
---|
284 | (xl.gt.real(numxgridn-1)-0.5).or. & |
---|
285 | (yl.gt.real(numygridn-1)-0.5)) then ! no kernel, direct attribution to grid cell |
---|
286 | if ((ix.ge.0).and.(jy.ge.0).and.(ix.le.numxgridn-1).and. & |
---|
287 | (jy.le.numygridn-1)) then |
---|
288 | do ks=1,nspec |
---|
289 | griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= & |
---|
290 | griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ & |
---|
291 | xmass1(i,ks)/rhoi*weight |
---|
292 | end do |
---|
293 | endif |
---|
294 | |
---|
295 | else ! attribution via uniform kernel |
---|
296 | |
---|
297 | ddx=xl-real(ix) ! distance to left cell border |
---|
298 | ddy=yl-real(jy) ! distance to lower cell border |
---|
299 | if (ddx.gt.0.5) then |
---|
300 | ixp=ix+1 |
---|
301 | wx=1.5-ddx |
---|
302 | else |
---|
303 | ixp=ix-1 |
---|
304 | wx=0.5+ddx |
---|
305 | endif |
---|
306 | |
---|
307 | if (ddy.gt.0.5) then |
---|
308 | jyp=jy+1 |
---|
309 | wy=1.5-ddy |
---|
310 | else |
---|
311 | jyp=jy-1 |
---|
312 | wy=0.5+ddy |
---|
313 | endif |
---|
314 | |
---|
315 | |
---|
316 | ! Determine mass fractions for four grid points |
---|
317 | !********************************************** |
---|
318 | |
---|
319 | if ((ix.ge.0).and.(ix.le.numxgridn-1)) then |
---|
320 | if ((jy.ge.0).and.(jy.le.numygridn-1)) then |
---|
321 | w=wx*wy |
---|
322 | do ks=1,nspec |
---|
323 | griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= & |
---|
324 | griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ & |
---|
325 | xmass1(i,ks)/rhoi*weight*w |
---|
326 | end do |
---|
327 | endif |
---|
328 | |
---|
329 | if ((jyp.ge.0).and.(jyp.le.numygridn-1)) then |
---|
330 | w=wx*(1.-wy) |
---|
331 | do ks=1,nspec |
---|
332 | griduncn(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)= & |
---|
333 | griduncn(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)+ & |
---|
334 | xmass1(i,ks)/rhoi*weight*w |
---|
335 | end do |
---|
336 | endif |
---|
337 | endif |
---|
338 | |
---|
339 | |
---|
340 | if ((ixp.ge.0).and.(ixp.le.numxgridn-1)) then |
---|
341 | if ((jyp.ge.0).and.(jyp.le.numygridn-1)) then |
---|
342 | w=(1.-wx)*(1.-wy) |
---|
343 | do ks=1,nspec |
---|
344 | griduncn(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)= & |
---|
345 | griduncn(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)+ & |
---|
346 | xmass1(i,ks)/rhoi*weight*w |
---|
347 | end do |
---|
348 | endif |
---|
349 | |
---|
350 | if ((jy.ge.0).and.(jy.le.numygridn-1)) then |
---|
351 | w=(1.-wx)*wy |
---|
352 | do ks=1,nspec |
---|
353 | griduncn(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)= & |
---|
354 | griduncn(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)+ & |
---|
355 | xmass1(i,ks)/rhoi*weight*w |
---|
356 | end do |
---|
357 | endif |
---|
358 | endif |
---|
359 | endif |
---|
360 | |
---|
361 | endif |
---|
362 | endif |
---|
363 | 20 continue |
---|
364 | end do |
---|
365 | |
---|
366 | !*********************************************************************** |
---|
367 | ! 2. Evaluate concentrations at receptor points, using the kernel method |
---|
368 | !*********************************************************************** |
---|
369 | |
---|
370 | do n=1,numreceptor |
---|
371 | |
---|
372 | |
---|
373 | ! Reset concentrations |
---|
374 | !********************* |
---|
375 | |
---|
376 | do ks=1,nspec |
---|
377 | c(ks)=0. |
---|
378 | end do |
---|
379 | |
---|
380 | |
---|
381 | ! Estimate concentration at receptor |
---|
382 | !*********************************** |
---|
383 | |
---|
384 | do i=1,numpart |
---|
385 | |
---|
386 | if (itra1(i).ne.itime) goto 40 |
---|
387 | itage=abs(itra1(i)-itramem(i)) |
---|
388 | |
---|
389 | hz=min(50.+0.3*sqrt(real(itage)),hzmax) |
---|
390 | zd=ztra1(i)/hz |
---|
391 | if (zd.gt.1.) goto 40 ! save computing time, leave loop |
---|
392 | |
---|
393 | hx=min((0.29+2.222e-3*sqrt(real(itage)))*dx+ & |
---|
394 | real(itage)*1.2e-5,hxmax) ! 80 km/day |
---|
395 | xd=(xtra1(i)-xreceptor(n))/hx |
---|
396 | if (xd*xd.gt.1.) goto 40 ! save computing time, leave loop |
---|
397 | |
---|
398 | hy=min((0.18+1.389e-3*sqrt(real(itage)))*dy+ & |
---|
399 | real(itage)*7.5e-6,hymax) ! 80 km/day |
---|
400 | yd=(ytra1(i)-yreceptor(n))/hy |
---|
401 | if (yd*yd.gt.1.) goto 40 ! save computing time, leave loop |
---|
402 | h=hx*hy*hz |
---|
403 | |
---|
404 | r2=xd*xd+yd*yd+zd*zd |
---|
405 | if (r2.lt.1.) then |
---|
406 | xkern=factor*(1.-r2) |
---|
407 | do ks=1,nspec |
---|
408 | c(ks)=c(ks)+xmass1(i,ks)*xkern/h |
---|
409 | end do |
---|
410 | endif |
---|
411 | 40 continue |
---|
412 | end do |
---|
413 | |
---|
414 | do ks=1,nspec |
---|
415 | creceptor(n,ks)=creceptor(n,ks)+2.*weight*c(ks)/receptorarea(n) |
---|
416 | end do |
---|
417 | end do |
---|
418 | |
---|
419 | end subroutine conccalc |
---|