1 | !********************************************************************** |
---|
2 | ! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 * |
---|
3 | ! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, * |
---|
4 | ! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann * |
---|
5 | ! * |
---|
6 | ! This file is part of FLEXPART. * |
---|
7 | ! * |
---|
8 | ! FLEXPART is free software: you can redistribute it and/or modify * |
---|
9 | ! it under the terms of the GNU General Public License as published by* |
---|
10 | ! the Free Software Foundation, either version 3 of the License, or * |
---|
11 | ! (at your option) any later version. * |
---|
12 | ! * |
---|
13 | ! FLEXPART is distributed in the hope that it will be useful, * |
---|
14 | ! but WITHOUT ANY WARRANTY; without even the implied warranty of * |
---|
15 | ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
---|
16 | ! GNU General Public License for more details. * |
---|
17 | ! * |
---|
18 | ! You should have received a copy of the GNU General Public License * |
---|
19 | ! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. * |
---|
20 | !********************************************************************** |
---|
21 | |
---|
22 | subroutine boundcond_domainfill(itime,loutend) |
---|
23 | ! i i |
---|
24 | !***************************************************************************** |
---|
25 | ! * |
---|
26 | ! Particles are created by this subroutine continuously throughout the * |
---|
27 | ! simulation at the boundaries of the domain-filling box. * |
---|
28 | ! All particles carry the same amount of mass which alltogether comprises the* |
---|
29 | ! mass of air within the box, which remains (more or less) constant. * |
---|
30 | ! * |
---|
31 | ! Author: A. Stohl * |
---|
32 | ! * |
---|
33 | ! 16 October 2002 * |
---|
34 | ! * |
---|
35 | !***************************************************************************** |
---|
36 | ! * |
---|
37 | ! Variables: * |
---|
38 | ! * |
---|
39 | ! nx_we(2) grid indices for western and eastern boundary of domain- * |
---|
40 | ! filling trajectory calculations * |
---|
41 | ! ny_sn(2) grid indices for southern and northern boundary of domain- * |
---|
42 | ! filling trajectory calculations * |
---|
43 | ! * |
---|
44 | !***************************************************************************** |
---|
45 | |
---|
46 | use point_mod |
---|
47 | use par_mod |
---|
48 | use com_mod |
---|
49 | |
---|
50 | implicit none |
---|
51 | |
---|
52 | real :: dz,dz1,dz2,ran1,dt1,dt2,dtt,ylat,xm,cosfact,accmasst |
---|
53 | integer :: itime,in,indz,indzp,i,loutend |
---|
54 | integer :: j,k,ix,jy,m,indzh,indexh,minpart,ipart,mmass |
---|
55 | integer :: numactiveparticles |
---|
56 | |
---|
57 | real :: windl(2),rhol(2) |
---|
58 | real :: windhl(2),rhohl(2) |
---|
59 | real :: windx,rhox |
---|
60 | real :: deltaz,boundarea,fluxofmass |
---|
61 | |
---|
62 | integer :: ixm,ixp,jym,jyp,indzm,mm |
---|
63 | real :: pvpart,ddx,ddy,rddx,rddy,p1,p2,p3,p4,y1(2),yh1(2) |
---|
64 | |
---|
65 | integer :: idummy = -11 |
---|
66 | |
---|
67 | |
---|
68 | ! If domain-filling is global, no boundary conditions are needed |
---|
69 | !*************************************************************** |
---|
70 | |
---|
71 | if (gdomainfill) return |
---|
72 | |
---|
73 | accmasst=0. |
---|
74 | numactiveparticles=0 |
---|
75 | |
---|
76 | ! Terminate trajectories that have left the domain, if domain-filling |
---|
77 | ! trajectory calculation domain is not global |
---|
78 | !******************************************************************** |
---|
79 | |
---|
80 | do i=1,numpart |
---|
81 | if (itra1(i).eq.itime) then |
---|
82 | if ((ytra1(i).gt.real(ny_sn(2))).or. & |
---|
83 | (ytra1(i).lt.real(ny_sn(1)))) itra1(i)=-999999999 |
---|
84 | if (((.not.xglobal).or.(nx_we(2).ne.(nx-2))).and. & |
---|
85 | ((xtra1(i).lt.real(nx_we(1))).or. & |
---|
86 | (xtra1(i).gt.real(nx_we(2))))) itra1(i)=-999999999 |
---|
87 | endif |
---|
88 | if (itra1(i).ne.-999999999) numactiveparticles= & |
---|
89 | numactiveparticles+1 |
---|
90 | end do |
---|
91 | |
---|
92 | |
---|
93 | ! Determine auxiliary variables for time interpolation |
---|
94 | !***************************************************** |
---|
95 | |
---|
96 | dt1=real(itime-memtime(1)) |
---|
97 | dt2=real(memtime(2)-itime) |
---|
98 | dtt=1./(dt1+dt2) |
---|
99 | |
---|
100 | ! Initialize auxiliary variable used to search for vacant storage space |
---|
101 | !********************************************************************** |
---|
102 | |
---|
103 | minpart=1 |
---|
104 | |
---|
105 | !*************************************** |
---|
106 | ! Western and eastern boundary condition |
---|
107 | !*************************************** |
---|
108 | |
---|
109 | ! Loop from south to north |
---|
110 | !************************* |
---|
111 | |
---|
112 | do jy=ny_sn(1),ny_sn(2) |
---|
113 | |
---|
114 | ! Loop over western (index 1) and eastern (index 2) boundary |
---|
115 | !*********************************************************** |
---|
116 | |
---|
117 | do k=1,2 |
---|
118 | |
---|
119 | ! Loop over all release locations in a column |
---|
120 | !******************************************** |
---|
121 | |
---|
122 | do j=1,numcolumn_we(k,jy) |
---|
123 | |
---|
124 | ! Determine, for each release location, the area of the corresponding boundary |
---|
125 | !***************************************************************************** |
---|
126 | |
---|
127 | if (j.eq.1) then |
---|
128 | deltaz=(zcolumn_we(k,jy,2)+zcolumn_we(k,jy,1))/2. |
---|
129 | else if (j.eq.numcolumn_we(k,jy)) then |
---|
130 | ! deltaz=height(nz)-(zcolumn_we(k,jy,j-1)+ |
---|
131 | ! + zcolumn_we(k,jy,j))/2. |
---|
132 | ! In order to avoid taking a very high column for very many particles, |
---|
133 | ! use the deltaz from one particle below instead |
---|
134 | deltaz=(zcolumn_we(k,jy,j)-zcolumn_we(k,jy,j-2))/2. |
---|
135 | else |
---|
136 | deltaz=(zcolumn_we(k,jy,j+1)-zcolumn_we(k,jy,j-1))/2. |
---|
137 | endif |
---|
138 | if ((jy.eq.ny_sn(1)).or.(jy.eq.ny_sn(2))) then |
---|
139 | boundarea=deltaz*111198.5/2.*dy |
---|
140 | else |
---|
141 | boundarea=deltaz*111198.5*dy |
---|
142 | endif |
---|
143 | |
---|
144 | |
---|
145 | ! Interpolate the wind velocity and density to the release location |
---|
146 | !****************************************************************** |
---|
147 | |
---|
148 | ! Determine the model level below the release position |
---|
149 | !***************************************************** |
---|
150 | |
---|
151 | do i=2,nz |
---|
152 | if (height(i).gt.zcolumn_we(k,jy,j)) then |
---|
153 | indz=i-1 |
---|
154 | indzp=i |
---|
155 | goto 6 |
---|
156 | endif |
---|
157 | end do |
---|
158 | 6 continue |
---|
159 | |
---|
160 | ! Vertical distance to the level below and above current position |
---|
161 | !**************************************************************** |
---|
162 | |
---|
163 | dz1=zcolumn_we(k,jy,j)-height(indz) |
---|
164 | dz2=height(indzp)-zcolumn_we(k,jy,j) |
---|
165 | dz=1./(dz1+dz2) |
---|
166 | |
---|
167 | ! Vertical and temporal interpolation |
---|
168 | !************************************ |
---|
169 | |
---|
170 | do m=1,2 |
---|
171 | indexh=memind(m) |
---|
172 | do in=1,2 |
---|
173 | indzh=indz+in-1 |
---|
174 | windl(in)=uu(nx_we(k),jy,indzh,indexh) |
---|
175 | rhol(in)=rho(nx_we(k),jy,indzh,indexh) |
---|
176 | end do |
---|
177 | |
---|
178 | windhl(m)=(dz2*windl(1)+dz1*windl(2))*dz |
---|
179 | rhohl(m)=(dz2*rhol(1)+dz1*rhol(2))*dz |
---|
180 | end do |
---|
181 | |
---|
182 | windx=(windhl(1)*dt2+windhl(2)*dt1)*dtt |
---|
183 | rhox=(rhohl(1)*dt2+rhohl(2)*dt1)*dtt |
---|
184 | |
---|
185 | ! Calculate mass flux |
---|
186 | !******************** |
---|
187 | |
---|
188 | fluxofmass=windx*rhox*boundarea*real(lsynctime) |
---|
189 | |
---|
190 | |
---|
191 | ! If the mass flux is directed into the domain, add it to previous mass fluxes; |
---|
192 | ! if it is out of the domain, set accumulated mass flux to zero |
---|
193 | !****************************************************************************** |
---|
194 | |
---|
195 | if (k.eq.1) then |
---|
196 | if (fluxofmass.ge.0.) then |
---|
197 | acc_mass_we(k,jy,j)=acc_mass_we(k,jy,j)+fluxofmass |
---|
198 | else |
---|
199 | acc_mass_we(k,jy,j)=0. |
---|
200 | endif |
---|
201 | else |
---|
202 | if (fluxofmass.le.0.) then |
---|
203 | acc_mass_we(k,jy,j)=acc_mass_we(k,jy,j)+abs(fluxofmass) |
---|
204 | else |
---|
205 | acc_mass_we(k,jy,j)=0. |
---|
206 | endif |
---|
207 | endif |
---|
208 | accmasst=accmasst+acc_mass_we(k,jy,j) |
---|
209 | |
---|
210 | ! If the accumulated mass exceeds half the mass that each particle shall carry, |
---|
211 | ! one (or more) particle(s) is (are) released and the accumulated mass is |
---|
212 | ! reduced by the mass of this (these) particle(s) |
---|
213 | !****************************************************************************** |
---|
214 | |
---|
215 | if (acc_mass_we(k,jy,j).ge.xmassperparticle/2.) then |
---|
216 | mmass=int((acc_mass_we(k,jy,j)+xmassperparticle/2.)/ & |
---|
217 | xmassperparticle) |
---|
218 | acc_mass_we(k,jy,j)=acc_mass_we(k,jy,j)- & |
---|
219 | real(mmass)*xmassperparticle |
---|
220 | else |
---|
221 | mmass=0 |
---|
222 | endif |
---|
223 | |
---|
224 | do m=1,mmass |
---|
225 | do ipart=minpart,maxpart |
---|
226 | |
---|
227 | ! If a vacant storage space is found, attribute everything to this array element |
---|
228 | !***************************************************************************** |
---|
229 | |
---|
230 | if (itra1(ipart).ne.itime) then |
---|
231 | |
---|
232 | ! Assign particle positions |
---|
233 | !************************** |
---|
234 | |
---|
235 | xtra1(ipart)=real(nx_we(k)) |
---|
236 | if (jy.eq.ny_sn(1)) then |
---|
237 | ytra1(ipart)=real(jy)+0.5*ran1(idummy) |
---|
238 | else if (jy.eq.ny_sn(2)) then |
---|
239 | ytra1(ipart)=real(jy)-0.5*ran1(idummy) |
---|
240 | else |
---|
241 | ytra1(ipart)=real(jy)+(ran1(idummy)-.5) |
---|
242 | endif |
---|
243 | if (j.eq.1) then |
---|
244 | ztra1(ipart)=zcolumn_we(k,jy,1)+(zcolumn_we(k,jy,2)- & |
---|
245 | zcolumn_we(k,jy,1))/4. |
---|
246 | else if (j.eq.numcolumn_we(k,jy)) then |
---|
247 | ztra1(ipart)=(2.*zcolumn_we(k,jy,j)+ & |
---|
248 | zcolumn_we(k,jy,j-1)+height(nz))/4. |
---|
249 | else |
---|
250 | ztra1(ipart)=zcolumn_we(k,jy,j-1)+ran1(idummy)* & |
---|
251 | (zcolumn_we(k,jy,j+1)-zcolumn_we(k,jy,j-1)) |
---|
252 | endif |
---|
253 | |
---|
254 | ! Interpolate PV to the particle position |
---|
255 | !**************************************** |
---|
256 | ixm=int(xtra1(ipart)) |
---|
257 | jym=int(ytra1(ipart)) |
---|
258 | ixp=ixm+1 |
---|
259 | jyp=jym+1 |
---|
260 | ddx=xtra1(ipart)-real(ixm) |
---|
261 | ddy=ytra1(ipart)-real(jym) |
---|
262 | rddx=1.-ddx |
---|
263 | rddy=1.-ddy |
---|
264 | p1=rddx*rddy |
---|
265 | p2=ddx*rddy |
---|
266 | p3=rddx*ddy |
---|
267 | p4=ddx*ddy |
---|
268 | do i=2,nz |
---|
269 | if (height(i).gt.ztra1(ipart)) then |
---|
270 | indzm=i-1 |
---|
271 | indzp=i |
---|
272 | goto 26 |
---|
273 | endif |
---|
274 | end do |
---|
275 | 26 continue |
---|
276 | dz1=ztra1(ipart)-height(indzm) |
---|
277 | dz2=height(indzp)-ztra1(ipart) |
---|
278 | dz=1./(dz1+dz2) |
---|
279 | do mm=1,2 |
---|
280 | indexh=memind(mm) |
---|
281 | do in=1,2 |
---|
282 | indzh=indzm+in-1 |
---|
283 | y1(in)=p1*pv(ixm,jym,indzh,indexh) & |
---|
284 | +p2*pv(ixp,jym,indzh,indexh) & |
---|
285 | +p3*pv(ixm,jyp,indzh,indexh) & |
---|
286 | +p4*pv(ixp,jyp,indzh,indexh) |
---|
287 | end do |
---|
288 | yh1(mm)=(dz2*y1(1)+dz1*y1(2))*dz |
---|
289 | end do |
---|
290 | pvpart=(yh1(1)*dt2+yh1(2)*dt1)*dtt |
---|
291 | ylat=ylat0+ytra1(ipart)*dy |
---|
292 | if (ylat.lt.0.) pvpart=-1.*pvpart |
---|
293 | |
---|
294 | |
---|
295 | ! For domain-filling option 2 (stratospheric O3), do the rest only in the stratosphere |
---|
296 | !***************************************************************************** |
---|
297 | |
---|
298 | if (((ztra1(ipart).gt.3000.).and. & |
---|
299 | (pvpart.gt.pvcrit)).or.(mdomainfill.eq.1)) then |
---|
300 | nclass(ipart)=min(int(ran1(idummy)* & |
---|
301 | real(nclassunc))+1,nclassunc) |
---|
302 | numactiveparticles=numactiveparticles+1 |
---|
303 | numparticlecount=numparticlecount+1 |
---|
304 | npoint(ipart)=numparticlecount |
---|
305 | idt(ipart)=mintime |
---|
306 | itra1(ipart)=itime |
---|
307 | itramem(ipart)=itra1(ipart) |
---|
308 | itrasplit(ipart)=itra1(ipart)+ldirect*itsplit |
---|
309 | xmass1(ipart,1)=xmassperparticle |
---|
310 | if (mdomainfill.eq.2) xmass1(ipart,1)= & |
---|
311 | xmass1(ipart,1)*pvpart*48./29.*ozonescale/10.**9 |
---|
312 | else |
---|
313 | goto 71 |
---|
314 | endif |
---|
315 | |
---|
316 | |
---|
317 | ! Increase numpart, if necessary |
---|
318 | !******************************* |
---|
319 | |
---|
320 | numpart=max(numpart,ipart) |
---|
321 | goto 73 ! Storage space has been found, stop searching |
---|
322 | endif |
---|
323 | end do |
---|
324 | if (ipart.gt.maxpart) & |
---|
325 | stop 'boundcond_domainfill.f: too many particles required' |
---|
326 | 73 minpart=ipart+1 |
---|
327 | 71 continue |
---|
328 | end do |
---|
329 | |
---|
330 | |
---|
331 | end do |
---|
332 | end do |
---|
333 | end do |
---|
334 | |
---|
335 | |
---|
336 | !***************************************** |
---|
337 | ! Southern and northern boundary condition |
---|
338 | !***************************************** |
---|
339 | |
---|
340 | ! Loop from west to east |
---|
341 | !*********************** |
---|
342 | |
---|
343 | do ix=nx_we(1),nx_we(2) |
---|
344 | |
---|
345 | ! Loop over southern (index 1) and northern (index 2) boundary |
---|
346 | !************************************************************* |
---|
347 | |
---|
348 | do k=1,2 |
---|
349 | ylat=ylat0+real(ny_sn(k))*dy |
---|
350 | cosfact=cos(ylat*pi180) |
---|
351 | |
---|
352 | ! Loop over all release locations in a column |
---|
353 | !******************************************** |
---|
354 | |
---|
355 | do j=1,numcolumn_sn(k,ix) |
---|
356 | |
---|
357 | ! Determine, for each release location, the area of the corresponding boundary |
---|
358 | !***************************************************************************** |
---|
359 | |
---|
360 | if (j.eq.1) then |
---|
361 | deltaz=(zcolumn_sn(k,ix,2)+zcolumn_sn(k,ix,1))/2. |
---|
362 | else if (j.eq.numcolumn_sn(k,ix)) then |
---|
363 | ! deltaz=height(nz)-(zcolumn_sn(k,ix,j-1)+ |
---|
364 | ! + zcolumn_sn(k,ix,j))/2. |
---|
365 | ! In order to avoid taking a very high column for very many particles, |
---|
366 | ! use the deltaz from one particle below instead |
---|
367 | deltaz=(zcolumn_sn(k,ix,j)-zcolumn_sn(k,ix,j-2))/2. |
---|
368 | else |
---|
369 | deltaz=(zcolumn_sn(k,ix,j+1)-zcolumn_sn(k,ix,j-1))/2. |
---|
370 | endif |
---|
371 | if ((ix.eq.nx_we(1)).or.(ix.eq.nx_we(2))) then |
---|
372 | boundarea=deltaz*111198.5/2.*cosfact*dx |
---|
373 | else |
---|
374 | boundarea=deltaz*111198.5*cosfact*dx |
---|
375 | endif |
---|
376 | |
---|
377 | |
---|
378 | ! Interpolate the wind velocity and density to the release location |
---|
379 | !****************************************************************** |
---|
380 | |
---|
381 | ! Determine the model level below the release position |
---|
382 | !***************************************************** |
---|
383 | |
---|
384 | do i=2,nz |
---|
385 | if (height(i).gt.zcolumn_sn(k,ix,j)) then |
---|
386 | indz=i-1 |
---|
387 | indzp=i |
---|
388 | goto 16 |
---|
389 | endif |
---|
390 | end do |
---|
391 | 16 continue |
---|
392 | |
---|
393 | ! Vertical distance to the level below and above current position |
---|
394 | !**************************************************************** |
---|
395 | |
---|
396 | dz1=zcolumn_sn(k,ix,j)-height(indz) |
---|
397 | dz2=height(indzp)-zcolumn_sn(k,ix,j) |
---|
398 | dz=1./(dz1+dz2) |
---|
399 | |
---|
400 | ! Vertical and temporal interpolation |
---|
401 | !************************************ |
---|
402 | |
---|
403 | do m=1,2 |
---|
404 | indexh=memind(m) |
---|
405 | do in=1,2 |
---|
406 | indzh=indz+in-1 |
---|
407 | windl(in)=vv(ix,ny_sn(k),indzh,indexh) |
---|
408 | rhol(in)=rho(ix,ny_sn(k),indzh,indexh) |
---|
409 | end do |
---|
410 | |
---|
411 | windhl(m)=(dz2*windl(1)+dz1*windl(2))*dz |
---|
412 | rhohl(m)=(dz2*rhol(1)+dz1*rhol(2))*dz |
---|
413 | end do |
---|
414 | |
---|
415 | windx=(windhl(1)*dt2+windhl(2)*dt1)*dtt |
---|
416 | rhox=(rhohl(1)*dt2+rhohl(2)*dt1)*dtt |
---|
417 | |
---|
418 | ! Calculate mass flux |
---|
419 | !******************** |
---|
420 | |
---|
421 | fluxofmass=windx*rhox*boundarea*real(lsynctime) |
---|
422 | |
---|
423 | ! If the mass flux is directed into the domain, add it to previous mass fluxes; |
---|
424 | ! if it is out of the domain, set accumulated mass flux to zero |
---|
425 | !****************************************************************************** |
---|
426 | |
---|
427 | if (k.eq.1) then |
---|
428 | if (fluxofmass.ge.0.) then |
---|
429 | acc_mass_sn(k,ix,j)=acc_mass_sn(k,ix,j)+fluxofmass |
---|
430 | else |
---|
431 | acc_mass_sn(k,ix,j)=0. |
---|
432 | endif |
---|
433 | else |
---|
434 | if (fluxofmass.le.0.) then |
---|
435 | acc_mass_sn(k,ix,j)=acc_mass_sn(k,ix,j)+abs(fluxofmass) |
---|
436 | else |
---|
437 | acc_mass_sn(k,ix,j)=0. |
---|
438 | endif |
---|
439 | endif |
---|
440 | accmasst=accmasst+acc_mass_sn(k,ix,j) |
---|
441 | |
---|
442 | ! If the accumulated mass exceeds half the mass that each particle shall carry, |
---|
443 | ! one (or more) particle(s) is (are) released and the accumulated mass is |
---|
444 | ! reduced by the mass of this (these) particle(s) |
---|
445 | !****************************************************************************** |
---|
446 | |
---|
447 | if (acc_mass_sn(k,ix,j).ge.xmassperparticle/2.) then |
---|
448 | mmass=int((acc_mass_sn(k,ix,j)+xmassperparticle/2.)/ & |
---|
449 | xmassperparticle) |
---|
450 | acc_mass_sn(k,ix,j)=acc_mass_sn(k,ix,j)- & |
---|
451 | real(mmass)*xmassperparticle |
---|
452 | else |
---|
453 | mmass=0 |
---|
454 | endif |
---|
455 | |
---|
456 | do m=1,mmass |
---|
457 | do ipart=minpart,maxpart |
---|
458 | |
---|
459 | ! If a vacant storage space is found, attribute everything to this array element |
---|
460 | !***************************************************************************** |
---|
461 | |
---|
462 | if (itra1(ipart).ne.itime) then |
---|
463 | |
---|
464 | ! Assign particle positions |
---|
465 | !************************** |
---|
466 | |
---|
467 | ytra1(ipart)=real(ny_sn(k)) |
---|
468 | if (ix.eq.nx_we(1)) then |
---|
469 | xtra1(ipart)=real(ix)+0.5*ran1(idummy) |
---|
470 | else if (ix.eq.nx_we(2)) then |
---|
471 | xtra1(ipart)=real(ix)-0.5*ran1(idummy) |
---|
472 | else |
---|
473 | xtra1(ipart)=real(ix)+(ran1(idummy)-.5) |
---|
474 | endif |
---|
475 | if (j.eq.1) then |
---|
476 | ztra1(ipart)=zcolumn_sn(k,ix,1)+(zcolumn_sn(k,ix,2)- & |
---|
477 | zcolumn_sn(k,ix,1))/4. |
---|
478 | else if (j.eq.numcolumn_sn(k,ix)) then |
---|
479 | ztra1(ipart)=(2.*zcolumn_sn(k,ix,j)+ & |
---|
480 | zcolumn_sn(k,ix,j-1)+height(nz))/4. |
---|
481 | else |
---|
482 | ztra1(ipart)=zcolumn_sn(k,ix,j-1)+ran1(idummy)* & |
---|
483 | (zcolumn_sn(k,ix,j+1)-zcolumn_sn(k,ix,j-1)) |
---|
484 | endif |
---|
485 | |
---|
486 | |
---|
487 | ! Interpolate PV to the particle position |
---|
488 | !**************************************** |
---|
489 | ixm=int(xtra1(ipart)) |
---|
490 | jym=int(ytra1(ipart)) |
---|
491 | ixp=ixm+1 |
---|
492 | jyp=jym+1 |
---|
493 | ddx=xtra1(ipart)-real(ixm) |
---|
494 | ddy=ytra1(ipart)-real(jym) |
---|
495 | rddx=1.-ddx |
---|
496 | rddy=1.-ddy |
---|
497 | p1=rddx*rddy |
---|
498 | p2=ddx*rddy |
---|
499 | p3=rddx*ddy |
---|
500 | p4=ddx*ddy |
---|
501 | do i=2,nz |
---|
502 | if (height(i).gt.ztra1(ipart)) then |
---|
503 | indzm=i-1 |
---|
504 | indzp=i |
---|
505 | goto 126 |
---|
506 | endif |
---|
507 | end do |
---|
508 | 126 continue |
---|
509 | dz1=ztra1(ipart)-height(indzm) |
---|
510 | dz2=height(indzp)-ztra1(ipart) |
---|
511 | dz=1./(dz1+dz2) |
---|
512 | do mm=1,2 |
---|
513 | indexh=memind(mm) |
---|
514 | do in=1,2 |
---|
515 | indzh=indzm+in-1 |
---|
516 | y1(in)=p1*pv(ixm,jym,indzh,indexh) & |
---|
517 | +p2*pv(ixp,jym,indzh,indexh) & |
---|
518 | +p3*pv(ixm,jyp,indzh,indexh) & |
---|
519 | +p4*pv(ixp,jyp,indzh,indexh) |
---|
520 | end do |
---|
521 | yh1(mm)=(dz2*y1(1)+dz1*y1(2))*dz |
---|
522 | end do |
---|
523 | pvpart=(yh1(1)*dt2+yh1(2)*dt1)*dtt |
---|
524 | if (ylat.lt.0.) pvpart=-1.*pvpart |
---|
525 | |
---|
526 | |
---|
527 | ! For domain-filling option 2 (stratospheric O3), do the rest only in the stratosphere |
---|
528 | !***************************************************************************** |
---|
529 | |
---|
530 | if (((ztra1(ipart).gt.3000.).and. & |
---|
531 | (pvpart.gt.pvcrit)).or.(mdomainfill.eq.1)) then |
---|
532 | nclass(ipart)=min(int(ran1(idummy)* & |
---|
533 | real(nclassunc))+1,nclassunc) |
---|
534 | numactiveparticles=numactiveparticles+1 |
---|
535 | numparticlecount=numparticlecount+1 |
---|
536 | npoint(ipart)=numparticlecount |
---|
537 | idt(ipart)=mintime |
---|
538 | itra1(ipart)=itime |
---|
539 | itramem(ipart)=itra1(ipart) |
---|
540 | itrasplit(ipart)=itra1(ipart)+ldirect*itsplit |
---|
541 | xmass1(ipart,1)=xmassperparticle |
---|
542 | if (mdomainfill.eq.2) xmass1(ipart,1)= & |
---|
543 | xmass1(ipart,1)*pvpart*48./29.*ozonescale/10.**9 |
---|
544 | else |
---|
545 | goto 171 |
---|
546 | endif |
---|
547 | |
---|
548 | |
---|
549 | ! Increase numpart, if necessary |
---|
550 | !******************************* |
---|
551 | numpart=max(numpart,ipart) |
---|
552 | goto 173 ! Storage space has been found, stop searching |
---|
553 | endif |
---|
554 | end do |
---|
555 | if (ipart.gt.maxpart) & |
---|
556 | stop 'boundcond_domainfill.f: too many particles required' |
---|
557 | 173 minpart=ipart+1 |
---|
558 | 171 continue |
---|
559 | end do |
---|
560 | |
---|
561 | |
---|
562 | end do |
---|
563 | end do |
---|
564 | end do |
---|
565 | |
---|
566 | |
---|
567 | xm=0. |
---|
568 | do i=1,numpart |
---|
569 | if (itra1(i).eq.itime) xm=xm+xmass1(i,1) |
---|
570 | end do |
---|
571 | |
---|
572 | !write(*,*) itime,numactiveparticles,numparticlecount,numpart, |
---|
573 | ! +xm,accmasst,xm+accmasst |
---|
574 | |
---|
575 | |
---|
576 | ! If particles shall be dumped, then accumulated masses at the domain boundaries |
---|
577 | ! must be dumped, too, to be used for later runs |
---|
578 | !***************************************************************************** |
---|
579 | |
---|
580 | if ((ipout.gt.0).and.(itime.eq.loutend)) then |
---|
581 | open(unitboundcond,file=path(2)(1:length(2))//'boundcond.bin', & |
---|
582 | form='unformatted') |
---|
583 | write(unitboundcond) numcolumn_we,numcolumn_sn, & |
---|
584 | zcolumn_we,zcolumn_sn,acc_mass_we,acc_mass_sn |
---|
585 | close(unitboundcond) |
---|
586 | endif |
---|
587 | |
---|
588 | end subroutine boundcond_domainfill |
---|