
Report on use of the GFS FV3 GRIB2
datasets obtained from

ftp.ncep.noaa.gov

23 July 2019

Don Morton
Boreal Scientific Computing

Fairbanks, Alaska, USA
Don.Morton@borealscicomp.com

Executive Summary

NCEP replaced its GFS model with the GFS FV3 model in June 2019, and the resulting GRIB2
files made available through ftp.ncep.noaa.gov have some differences in structure, beyond the
expected differences in values of a new NWP model. This document outlines my exploration of
these differences as they apply to FLEXPART usage.

The short story is that the structural differences in ​the GRIB2 met files do result in differences in
the FLEXPART 3d data​, due to the way that FLEXPART code reads this data in. Experiments
have been performed, comparing FLEXPART runs driven by the FV3 files available from NCEP,
and from modified FV3 files in which the relevant structural differences are removed. These
differences in input data show up at the 1 to 150 mb levels in the ​u, v, w, qv, t ​and ​height
variables processed by ​readwind_gfs()​. The experiments I performed had a single OUTGRID
layer with a top of 150 meters, and five-day backward and forward simulations produced SRS
files that were unix diff identical - zero differences between the FV3- and modified-FV3-driven
simulations.

It’s clear to me that the new FV3 files, when ingested by FLEXPART, put incorrect data in the
temperature arrays at the 15 and 40 mb levels, and this results in differences at the high-altitude
levels for other variables. It’s not clear to me whether these differences should be a concern to
anybody, but I am writing this report “just in case.” If this is a concern, there are two possible
fixes I can think of

mailto:Don.Morton@borealscicomp.com

● Modify the FLEXPART code so that it will read the levels correctly. This would be a little

involved, and error-prone
● Modify the FV3 files with the ​eccodes​ ​grib_copy​ utility to “cut out” the offending layers.

This is easy

Background

In June 2019 NOAA replaced the core of its Global Forecast System (GFS) with a Finite-Volume
Cubed-Sphere (FV3) - ​NOAA upgrades the U.S. global weather forecast model​.

An ongoing comparison of the two is available at -
https://www.emc.ncep.noaa.gov/mmb/gmanikin/fv3gfs/fv3images.html​. This was last accessed
on 23 July 2019, and I imagine it will vanish in the near future once the original GFS runs are
halted (Autumn 2019?).

The FV3 GRIB files can be downloaded from (for example)

ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20190625/18/

First, note that the directory structure is slightly different than it was pre-FV3.

Of more interest is that the new GRIB files have a couple of oddities at the 15mb and 40mb
pressure levels. In the following, I’ve excerpted three columns from the ​grib_ls​ output on one of
these files. What’s notable is that the new FV3 GRIB files have data at the 15 mb and 40 mb
pressure levels - these levels were not present in the old GFS. A little more worrisome is that
these new pressure levels don’t have the ​u​, ​v​, and ​r​ values that are present in the other
pressure levels.

.

.

.

isobaricInhPa 10 gh

isobaricInhPa 10 t

isobaricInhPa 10 r

isobaricInhPa 10 u

isobaricInhPa 10 v

isobaricInhPa 10 absv

isobaricInhPa 10 o3mr

https://www.noaa.gov/media-release/noaa-upgrades-us-global-weather-forecast-model
https://www.emc.ncep.noaa.gov/mmb/gmanikin/fv3gfs/fv3images.html
ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20190625/18/

isobaricInhPa 15 gh

isobaricInhPa 15 t

isobaricInhPa 15 absv

isobaricInhPa 15 o3mr

isobaricInhPa 20 gh

isobaricInhPa 20 t

isobaricInhPa 20 r

isobaricInhPa 20 u

isobaricInhPa 20 v

isobaricInhPa 20 absv

isobaricInhPa 20 o3mr

isobaricInhPa 30 gh

isobaricInhPa 30 t

isobaricInhPa 30 r

isobaricInhPa 30 u

isobaricInhPa 30 v

isobaricInhPa 30 absv

isobaricInhPa 30 o3mr

isobaricInhPa 40 gh

isobaricInhPa 40 t

isobaricInhPa 40 absv

isobaricInhPa 40 o3mr

isobaricInhPa 50 gh

isobaricInhPa 50 t

isobaricInhPa 50 r

isobaricInhPa 50 tcc

isobaricInhPa 50 u

isobaricInhPa 50 v

isobaricInhPa 50 absv

isobaricInhPa 50 clwm

isobaricInhPa 50 icmr

isobaricInhPa 50 rwmr

isobaricInhPa 50 snmr

isobaricInhPa 50 grle

isobaricInhPa 50 o3mr

.

.

.

This was causing problems in a utility designed to check GRIB files before they are used,
because the utility would try to assure that any of the primary variables like ​u​, ​v​, and ​t​ were
available on the same pressure levels. In the case of the new FV3 files, the ​t​ values were
available on the 15 and 40 mb pressure levels, but the other variables were not.

We had already tested FLEXPART simulations with the new FV3 met files and noted that they
ran to completion, and that differences relative to the previous GFS met files “seemed” to be
within the bounds that we might expect for two different NWP models. But, we began to wonder

if the introduction of ​t​ at two additional pressure levels might introduce errors into the
FLEXPART code. We found that they did.

Analysis of code, leading to hypothesis

I analyzed the code from FPv9.3.2 - a version used solely by CTBTO. I have since looked at
the analogous code in FPv10.3, and it looks to me like the same problems will manifest
themselves there.

This is a preliminary explanation - based on reading the source code - of how the NCEP
pressure levels are processed

● In ​gridcheck_gfs.F90​, we read a single GRIB file to figure out how many levels there are,
etc. As each message is read, if it is a ​UU​ (wind) message, then we store its level (in
millibars) in array ​pres()​. Through several steps, these pressure levels make their way
into array ​akm()​. So, when this routine is complete, the global array ​akz()​ contains a
sorted list of the pressure levels for UU, and it's assumed that this will correspond to the
same pressure levels for ​v​, ​r​, ​w​ and ​t​. Sabine has a comment in here which says that
we assume the pressure levels are in descending order, and has code to make sure this
happens, but it looks like this will only work if the array does not start with a mixed order.

● Then, ​readwind_gfs.F90​ is used to read individual GRIB files, using some of the
variables (like array ​akz()​) that were created in ​gridcheck_gfs.F90​ to help with later
processing.

○ Before reading the messages, variables like ​numpu​ (number of ​u​ pressure levels
read so far), ​numpt​ (number of ​t​ pressure levels read so far), etc. are set to zero.

○ As each message is read, if it corresponds to ​u​, the pressure level for the
message is read, and then the array ​akz()​ is scanned to find the index that
corresponds to that pressure level. Then, the full 2D slice is read into the 3D
array ​uuh(:,:,numpu)​. If all goes well, then after all messages have been read,
uuh should have 2D horizontal slices for all pressure levels. This also applies to

the other 3D variables, ​v​, ​r​, ​t​ and ​w​ (​w​ is a little more complicated, because it's
available only at lower atmospheric levels, but it works).

So let's consider the reading in of ​t​, available at two extra pressure levels (15 mb and 40 mb),
based on an ​akz()​ that was created from ​u​, and doesn't have those two extra pressure levels...
When it is determined that the message contains variable ​t,​ the code searches for the pressure
level of this message (variable ​current_grib_level​) in the array of pressure levels, ​akz()​:

do​ ii​=​1​,​nuvz
 ​if​ ​(​current_grib_level ​.​eq​.​ akz​(​ii​))​ numpt​=​ii
end​ ​do

In the case of a 15 mb or 40 mb pressure level, the ​if​ statement will never evaluate to ​True​,
so ​numpt​ will retain the value from the last message that contained ​t​. This means that the
current 2D horizontal slice will overwrite the one from the last message. This will happen twice -
once when reading the 15 mb message, and again when reading the 40 mb message. The rest
of the code will assume these are all correct, and when it "thinks" it's using 10 mb temperatures,
it will really be using 15 mb temperatures, and when it "thinks" it's using 30 mb temperatures, it
will really be using 40 mb temperatures.

40 mb is approximately 22km altitude, and 15 mb is approximately 28 km altitude. My gut
feeling is that the effects of this error are negligible.

So, the hypothesis I come to is that FLEXPART (versions 9.3.2, 10.3, and many others),
upon reading FV3 met files, will incorrectly store 15 mb temperatures in the 10 mb level
of the array, and 40 mb temperatures in the 30 mb level of the array.

Testing the hypothesis that two FV3 pressure levels
are ingested incorrectly by FLEXPART

The primary experiment I set up consisted of two identical FLEXPART simulations, varying only
in the structure of the FV3 met file ingested. One simulation used the original FV3 met files and
the other simulation used modified FV3 files. These files were modified as follows:

$ grib_copy ​-​w level​!=​15​,​level​!=​40​ old​.​gr2 ​new​.​gr2

In addition to removing the four 15 mb messages and the four 40 mb messages, this also
removes four 40 Pa messages (which are not used by FLEXPART) and two 40-meter u,v
messages (also note used by FLEXPART), for a total of fourteen messages removed.

In the FPv9.3.2, getfields.F90, the following code was added in the declarations:

#ifdef​ FV3DB
 INTEGER fv3db_levelnum

 INTEGER fv3db_idx

#endif

and the following was added just after the call to readwind_gfs():

 call readwind_gfs​(​indj​,​memind​(​1​),​uuh​,​vvh​,​wwh)

#ifdef​ FV3DB
PRINT ​*,​ ​'FV3 Debugging Output...'
PRINT ​*,​ ​'indj, memind(1): '​,​ indj​,​ memind​(​1)
PRINT ​*,​ ​' '

PRINT ​*,​ ​' level press level TT_MAX TT_MIN TT_AVE'
DO fv3db_levelnum​=​18​,​31
 PRINT ​*,​ fv3db_levelnum​,​ akz​(​fv3db_levelnum​),​ &
&​ MAXVAL​(​tth​(:,:,​fv3db_levelnum​,​1​)),​ &
&​ MINVAL​(​tth​(:,:,​fv3db_levelnum​,​1​)),​ &
&​ SUM​(​tth​(:,:,​fv3db_levelnum​,​1​))​ ​/​ SIZE​(​tth​(:,:,​fv3db_levelnum​,​1​))
ENDDO

PRINT ​*,​ ​' '

PRINT ​*,​ ​' level press level UU_MAX UU_MIN UU_AVE'
DO fv3db_levelnum​=​18​,​31
 PRINT ​*,​ fv3db_levelnum​,​ akz​(​fv3db_levelnum​),​ &
&​ MAXVAL​(​uuh​(:,:,​fv3db_levelnum​)),​ &
&​ MINVAL​(​uuh​(:,:,​fv3db_levelnum​)),​ &
&​ SUM​(​uuh​(:,:,​fv3db_levelnum​))​ ​/​ SIZE​(​uuh​(:,:,​fv3db_levelnum​))
ENDDO

PRINT ​*,​ ​' '

PRINT ​*,​ ​' level press level VV_MAX VV_MIN VV_AVE'
DO fv3db_levelnum​=​18​,​31
 PRINT ​*,​ fv3db_levelnum​,​ akz​(​fv3db_levelnum​),​ &

&​ MAXVAL​(​vvh​(:,:,​fv3db_levelnum​)),​ &
&​ MINVAL​(​vvh​(:,:,​fv3db_levelnum​)),​ &
&​ SUM​(​vvh​(:,:,​fv3db_levelnum​))​ ​/​ SIZE​(​vvh​(:,:,​fv3db_levelnum​))
ENDDO

STOP

#endif

This had the effect of dumping key statistics (max, min, average) for levels 18 through 31 of the
tth​, ​uuh​ and ​vvh​ arrays. If the hypothesis was correct, I would expect that the statistics
produced by ingesting both met files would be identical, EXCEPT for the 10 mb and 30 mb
pressure levels (levels 24 and 26 in the arrays) in the ​tth​ variable. The ​uuh​ and ​vvh​ variables
should be identical. This was, indeed, the case, as seen below.

Original FV3 Met File Modified FV
 level press level TT_MAX TT_MIN TT_AVE

 18 25000.0000 240.699997 202.100006 223.488281

 19 20000.0000 237.704697 197.704697 217.862366

 20 15000.0000 234.846863 195.046860 213.431168

 21 10000.0000 231.209885 189.509888 208.677231

 22 7000.00000 230.100006 190.100006 208.705551

 23 5000.00000 230.373566 185.173553 211.106491

 24 3000.00000 231.099655 180.599655 212.623291

 25 2000.00000 236.713669 173.513672 217.807236

 26 1000.00000 239.597244 176.197235 219.870667

 27 700.000000 250.109833 179.809830 228.384338

 28 500.000000 257.320374 174.620361 234.090302

 29 300.000000 268.524231 194.624222 244.970078

 30 200.000000 279.890259 202.390274 253.036102

 31 100.000000 283.813904 208.713913 257.377411

 level press level UU_MAX UU_MIN UU_AVE

 18 25000.0000 82.7371521 -45.5628471 11.4414339

 19 20000.0000 80.0236816 -30.3763218 12.7553673

 20 15000.0000 69.9404678 -33.8095284 12.8670254

 21 10000.0000 63.9847946 -36.9052048 10.1393251

 22 7000.00000 58.2364883 -23.4335098 8.46585846

 23 5000.00000 61.7349739 -18.0050240 7.80478239

 24 3000.00000 70.4412537 -23.9187450 7.26333427

 25 2000.00000 80.9172745 -27.1127224 6.78807354

 26 1000.00000 110.139793 -35.8602066 4.63955450

 27 700.000000 125.496750 -40.9632454 4.92044544

 28 500.000000 133.159744 -45.5002480 6.90335608

 29 300.000000 135.399704 -49.7002945 10.5503769

 30 200.000000 133.309418 -51.1105843 11.9342213

 31 100.000000 148.408508 -52.1314926 13.4070730

 level press level TT_MAX TT_MIN TT_AVE

 18 25000.0000 240.699997 202.100006 223.488281

 19 20000.0000 237.704697 197.704697 217.862366

 20 15000.0000 234.846863 195.046860 213.431168

 21 10000.0000 231.209885 189.509888 208.677231

 22 7000.00000 230.100006 190.100006 208.705551

 23 5000.00000 230.373566 185.173553 211.106491

 24 3000.00000 232.539719 175.539719 214.837738

 25 2000.00000 236.713669 173.513672 217.807236

 26 1000.00000 245.136002 176.636002 223.705826

 27 700.000000 250.109833 179.809830 228.384338

 28 500.000000 257.320374 174.620361 234.090302

 29 300.000000 268.524231 194.624222 244.970078

 30 200.000000 279.890259 202.390274 253.036102

 31 100.000000 283.813904 208.713913 257.377411

 level press level UU_MAX UU_MIN UU_AVE

 18 25000.0000 82.7371521 -45.5628471 11.4414339

 19 20000.0000 80.0236816 -30.3763218 12.7553673

 20 15000.0000 69.9404678 -33.8095284 12.8670254

 21 10000.0000 63.9847946 -36.9052048 10.1393251

 22 7000.00000 58.2364883 -23.4335098 8.46585846

 23 5000.00000 61.7349739 -18.0050240 7.80478239

 24 3000.00000 70.4412537 -23.9187450 7.26333427

 25 2000.00000 80.9172745 -27.1127224 6.78807354

 26 1000.00000 110.139793 -35.8602066 4.63955450

 27 700.000000 125.496750 -40.9632454 4.92044544

 28 500.000000 133.159744 -45.5002480 6.90335608

 29 300.000000 135.399704 -49.7002945 10.5503769

 30 200.000000 133.309418 -51.1105843 11.9342213

 31 100.000000 148.408508 -52.1314926 13.4070730

 level press level VV_MAX VV_MIN VV_AVE

 18 25000.0000 60.1046066 -59.1953926 4.61703129E-02

 19 20000.0000 60.5235062 -63.8764954 -0.141465545

 20 15000.0000 42.1624603 -45.8475380 -0.421888620

 21 10000.0000 31.0849590 -24.7650414 -4.07871343E-02

 22 7000.00000 40.0117645 -24.3782349 -9.11320299E-02

 23 5000.00000 42.1160011 -19.6340008 -0.266243249

 24 3000.00000 49.8426819 -19.3073196 0.132733643

 25 2000.00000 55.2268600 -22.0731392 9.13939402E-02

 26 1000.00000 53.2846832 -24.3253155 0.151836589

 27 700.000000 51.4220848 -31.9379158 -8.45138505E-02

 28 500.000000 49.1979446 -36.5120544 -9.76039618E-02

 29 300.000000 52.5225945 -35.6674042 0.189863190

 30 200.000000 38.0044250 -34.1555748 0.342470437

 31 100.000000 38.1457481 -34.2642517 8.36446658E-02

 level press level VV_MAX VV_MIN VV_AVE

 18 25000.0000 60.1046066 -59.1953926 4.61703129E-02

 19 20000.0000 60.5235062 -63.8764954 -0.141465545

 20 15000.0000 42.1624603 -45.8475380 -0.421888620

 21 10000.0000 31.0849590 -24.7650414 -4.07871343E-02

 22 7000.00000 40.0117645 -24.3782349 -9.11320299E-02

 23 5000.00000 42.1160011 -19.6340008 -0.266243249

 24 3000.00000 49.8426819 -19.3073196 0.132733643

 25 2000.00000 55.2268600 -22.0731392 9.13939402E-02

 26 1000.00000 53.2846832 -24.3253155 0.151836589

 27 700.000000 51.4220848 -31.9379158 -8.45138505E-02

 28 500.000000 49.1979446 -36.5120544 -9.76039618E-02

 29 300.000000 52.5225945 -35.6674042 0.189863190

 30 200.000000 38.0044250 -34.1555748 0.342470437

 31 100.000000 38.1457481 -34.2642517 8.36446658E-02

Further, because the grib messages contain max, min and average values, I should be able to
process the files with the ​eccodes grib_ls​ and compare those values with the ones obtained
above and find that, in the original FV3 met file, the ​t​ values at 15 mb end up in the 10 mb level
of the ​tth​ array, and the ​t​ values at 40 mb end up in the 30 mb level of the ​tth​ array:

$ grib_ls ​-​p shortName​,​level​,​maximum​,​minimum​,​average ​-​w typeOfLevel​=​isobaricInhPa GX19061300
shortName level maximum minimum average

gh ​1​ ​50031.4​ ​40964.7​ ​47001.4

t ​1​ ​283.814​ ​208.714​ ​257.314

r ​1​ ​0.1​ ​0​ ​6.27116e-05
u ​1​ ​148.409​ ​-​52.1315​ ​13.4074

v ​1​ ​38.1457​ ​-​34.2643​ ​0.0777974

o3mr ​1​ ​8.30899e-06​ ​3.38339e-06​ ​5.40342e-06
.

.

.

t ​15​ ​239.597​ ​176.197​ ​219.9

.

.

.

t ​40​ ​231.1​ ​180.6​ ​212.72

.

.

.

Again, this is exactly the case - the max and min values agree according to the hypothesis.
None of the average values agree, but the FLEXPART array sizes are larger than the number of
values in a GRIB message, so one would not expect the average values to agree.

So, to summarize, the evidence above strongly supports the hypothesis that ​FLEXPART
(versions 9.3.2, 10.3, and many others), upon reading FV3 met files, will incorrectly store
15 mb temperatures in the 10 mb level of the array, and 40 mb temperatures in the 30 mb
level of the array.

Other experiments performed

Two additional experiments were performed. They were actually performed before the decisive
one described above, but weren’t conclusive enough. Still, they add valuable insight.

I - Comparison of FLEXPART output driven by original FV3
versus modified FV3 met files

A FLEXPART configuration was defined with a single 12-hour release over Quito, Ecuador, for
runs of 120 hours. The OUTGRID had a single level defined at 150 meters, and the raw
FLEXPART output was converted to an SRS file.

A forward and a backward set of simulations were performed, each driven by both original FV3
met files and modified (15 mb and 40 mb levels removed) FV3 met files. The resulting SRS files
were compared with the Unix ​diff​ utility, which reported exactly identical outputs for the forward
case, and the same for the backward case. This was interesting, but not a complete surprise,
given that the altitude of 30 mb is approximately 25,000 meters!

This was only one experiment, but it gave me the feeling that at least at low altitudes, the effects
of the problem described above are negligible, if not absent.

II - Comparison of GRIB2FLEXPART output produced from
original FV3 versus modified FV3 met files

With the ​grib2flexpart​ utility available in FLEXPART v9.3.2, we are able to read GRIB files,
perform the processing that FLEXPART normally performs on these files, and then write to
NetCDF4 (NC4) files for later use. With this output I thought it would be instructive to compare
the processed fields produced from both original FV3 and modified (15 mb and 40 mb levels
removed) FV3 met files. What I found was that all of the 3D fields exhibited differences (relative
to the original and modified FV3 inputs) from approximately levels 24 to 31, which corresponds
to those levels at 30 mb and above. I don’t understand all the details of the processing, but I
think my findings can be summarized simply by showing the two ​height​ arrays created through
the processing. The first one comes from the original FV3 input, the second from the modified
FV3 input:

height ​=​ ​0​,​ ​188.7394​,​ ​380.9402​,​ ​578.2631​,​ ​781.939​,​ ​1213.639​,​ ​1678.051​,
 ​2175.971​,​ ​2709.85​,​ ​3279.624​,​ ​3888.484​,​ ​4540.39​,​ ​5245.276​,​ ​6012.5​,
 ​6848.926​,​ ​7769.207​,​ ​8795.345​,​ ​9957.576​,​ ​11304.94​,​ ​12985.91​,​ ​15334.57​,
 ​17387.61​,​ ​19312.11​,​ ​22184.87​,​ ​24422.83​,​ ​28216.06​,​ ​30192.36​,​ ​32094.13​,
 ​35085.36​,​ ​37566.02​,​ ​41934.45​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,
 ​0​,​ ​0​,
 ​0​,​ ​0​,
 ​0​,​ ​0​,
 ​0​,​ ​0​ ;

height ​=​ ​0​,​ ​188.7394​,​ ​380.9402​,​ ​578.2631​,​ ​781.939​,​ ​1213.639​,​ ​1678.051​,
 ​2175.971​,​ ​2709.85​,​ ​3279.624​,​ ​3888.484​,​ ​4540.39​,​ ​5245.276​,​ ​6012.5​,
 ​6848.926​,​ ​7769.207​,​ ​8795.345​,​ ​9957.576​,​ ​11304.94​,​ ​12985.91​,​ ​15334.57​,
 ​17387.61​,​ ​19312.11​,​ ​22161.31​,​ ​24380.83​,​ ​28208.81​,​ ​30203.09​,​ ​32104.87​,
 ​35096.09​,​ ​37576.75​,​ ​41945.19​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,​ ​0​,
 ​0​,​ ​0​,
 ​0​,​ ​0​,
 ​0​,​ ​0​,
 ​0​,​ ​0​ ;

One finding that surprised me was that some of the pairwise differences were large. Since
these were netCDF files I was able to write a Python-numpy program that found the pairwise
differences of a level generated by original and modified FV3 inputs, and then find the maximum
absolute difference - in one case I was finding differences of up to 21 Kelvins at an arbitrary
point. I didn’t pursue this any further, but it dawned on me that “if” someone is using
FLEXPART (or ​grib2nc4​) at these high altitudes, maybe they have something to be concerned
about - I really don’t know.

Summary

There is no doubt that use of the new FV3 files will result in FLEXPART writing 15 mb
temperature values into its 10 mb level in ​tth​, and writing the 40 mb temperature values into its
30 mb level. After normal processing of the 3D variables, these errors seem to expand to other
levels, but, in my limited testing, it seems like the effects are at the 30 mb level and above.

So, this is clearly a “bug,” but at least for low-altitude simulations it doesn’t strike me as one
that’s worthy of additional work. One could refactor the code in readwind_gfs() (if they did, they
might also want to get rid of the assumption that pressure levels in the GRIB file are ordered),
but this would be a little tedious and prone to introducing more errors.

It seems to me that an easier fix - if people found it necessary - would be to use ​eccodes
grib_copy​ to remove the offending levels.

