Changeset 0e2f93e in flex_extract.git
 Timestamp:
 Nov 27, 2018, 9:41:47 PM (20 months ago)
 Branches:
 master, dev, feature/makefiles, origin/task/languageediting, task/languageediting
 Children:
 786cfd6
 Parents:
 ca48036
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

source/python/mods/disaggregation.py
r708c667 r0e2f93e 210 210 211 211 # time step 212 dt =1.0212 dt = 1.0 213 213 214 214 ############### Nonnegative Geometric Mean Based Algorithm ############### … … 217 217 # the value at t=0 of the interpolation algorithm coincides with the 218 218 # first data value according to the persistence hypothesis 219 f =[g[0]]219 f = [g[0]] 220 220 221 221 # compute two first subgrid intervals without monotonicity check … … 223 223 # points and interpolate the corresponding data values 224 224 # except for the last interval due to boundary conditions 225 for i in range(0, 2):225 for i in range(0, 2): 226 226 227 227 # as a requirement: … … 229 229 # interval in f has to be zero to such that f[i+1]=f[i+2]=f[i+3]=0 230 230 # according to Eq. (6) 231 if g[i] ==0.:232 f.extend([0., 0.,0.])231 if g[i] == 0.: 232 f.extend([0., 0., 0.]) 233 233 234 234 # otherwise the subgrid values are calculated and added to the list … … 245 245 # the function value at the first subgrid point (fi1) is determined 246 246 # according to the equal area condition with Eq. (19) 247 fi1 =3./2.*g[i]5./12.*fip11./12.*fi247 fi1 = 3./2.*g[i]5./12.*fip11./12.*fi 248 248 249 249 # the function value at the second subgrid point (fi2) is determined 250 250 # according Eq. (18) 251 fi2 =fi1+1./3.*(fip1fi)251 fi2 = fi1+1./3.*(fip1fi) 252 252 253 253 # add next interval of interpolated (sub)grid values … … 260 260 # points and interpolate the corresponding data values 261 261 # except for the last interval due to boundary conditions 262 for i in range(2, len(g)1):262 for i in range(2, len(g)1): 263 263 264 264 # as a requirement: … … 266 266 # interval in f has to be zero to such that f[i+1]=f[i+2]=f[i+3]=0 267 267 # according to Eq. (6) 268 if g[i] ==0.:268 if g[i] == 0.: 269 269 # apply monotonicity filter for interval before 270 270 # check if there is "M" or "W" shape 271 if np.sign(f[5]f[6]) * np.sign(f[4]f[5]) ==1 \272 and np.sign(f[4]f[5]) * np.sign(f[3]f[4]) ==1 \273 and np.sign(f[3]f[4]) * np.sign(f[2]f[3]) ==1:271 if np.sign(f[5]f[6]) * np.sign(f[4]f[5]) == 1 \ 272 and np.sign(f[4]f[5]) * np.sign(f[3]f[4]) == 1 \ 273 and np.sign(f[3]f[4]) * np.sign(f[2]f[3]) == 1: 274 274 275 275 # the monotonicity filter corrects the value at (fim1) by … … 283 283 # interval boundaries (fi) and (fip2) remains unchanged 284 284 # see Eq. (18) and (19) 285 f[4] =fmon286 f[6] =3./2.*g[i2]5./12.*fmon1./12.*f[7]287 f[5] =f[6]+(fmonf[7])/3.288 f[3] =3./2.*g[i1]5./12.*f[1]1./12.*fmon289 f[2] =f[3]+(f[1]fmon)/3.285 f[4] = fmon 286 f[6] = 3./2.*g[i2]5./12.*fmon1./12.*f[7] 287 f[5] = f[6]+(fmonf[7])/3. 288 f[3] = 3./2.*g[i1]5./12.*f[1]1./12.*fmon 289 f[2] = f[3]+(f[1]fmon)/3. 290 290 291 291 f.extend([0.,0.,0.]) … … 300 300 # geometric mean, restricted such that nonnegativity is guaranteed 301 301 # according to Eq. (25) 302 fip1 =min( 3.*g[i] , 3.*g[i+1] , np.sqrt(g[i+1]*g[i]) )302 fip1 = min( 3.*g[i] , 3.*g[i+1] , np.sqrt(g[i+1]*g[i]) ) 303 303 304 304 # the function value at the first subgrid point (fi1) is determined 305 305 # according to the equal area condition with Eq. (19) 306 fi1 =3./2.*g[i]5./12.*fip11./12.*fi306 fi1 = 3./2.*g[i]5./12.*fip11./12.*fi 307 307 308 308 # the function value at the second subgrid point (fi2) is determined 309 309 # according Eq. (18) 310 fi2 =fi1+1./3.*(fip1fi)310 fi2 = fi1+1./3.*(fip1fi) 311 311 312 312 # apply monotonicity filter for interval before 313 313 # check if there is "M" or "W" shape 314 if np.sign(f[5]f[6]) * np.sign(f[4]f[5]) ==1 \315 and np.sign(f[4]f[5]) * np.sign(f[3]f[4]) ==1 \316 and np.sign(f[3]f[4]) * np.sign(f[2]f[3]) ==1:314 if np.sign(f[5]f[6]) * np.sign(f[4]f[5]) == 1 \ 315 and np.sign(f[4]f[5]) * np.sign(f[3]f[4]) == 1 \ 316 and np.sign(f[3]f[4]) * np.sign(f[2]f[3]) == 1: 317 317 318 318 # the monotonicity filter corrects the value at (fim1) by … … 326 326 # interval boundaries (fi) and (fip2) remains unchanged 327 327 # see Eq. (18) and (19) 328 f[4] =fmon329 f[6] =3./2.*g[i2]5./12.*fmon1./12.*f[7]330 f[5] =f[6]+(fmonf[7])/3.331 f[3] =3./2.*g[i1]5./12.*f[1]1./12.*fmon332 f[2] =f[3]+(f[1]fmon)/3.328 f[4] = fmon 329 f[6] = 3./2.*g[i2]5./12.*fmon1./12.*f[7] 330 f[5] = f[6]+(fmonf[7])/3. 331 f[3] = 3./2.*g[i1]5./12.*f[1]1./12.*fmon 332 f[2] = f[3]+(f[1]fmon)/3. 333 333 334 334 # add next interval of interpolated (sub)grid values … … 343 343 # interval in f has to be zero to such that f[i+1]=f[i+2]=f[i+3]=0 344 344 # according to Eq. (6) 345 if g[1] ==0.:345 if g[1] == 0.: 346 346 # apply monotonicity filter for interval before 347 347 # check if there is "M" or "W" shape 348 if np.sign(f[5]f[6]) * np.sign(f[4]f[5]) ==1 \349 and np.sign(f[4]f[5]) * np.sign(f[3]f[4]) ==1 \350 and np.sign(f[3]f[4]) * np.sign(f[2]f[3]) ==1:348 if np.sign(f[5]f[6]) * np.sign(f[4]f[5]) == 1 \ 349 and np.sign(f[4]f[5]) * np.sign(f[3]f[4]) == 1 \ 350 and np.sign(f[3]f[4]) * np.sign(f[2]f[3]) == 1: 351 351 352 352 # the monotonicity filter corrects the value at (fim1) by … … 360 360 # interval boundaries (fi) and (fip2) remains unchanged 361 361 # see Eq. (18) and (19) 362 f[4] =fmon363 f[6] =3./2.*g[3]5./12.*fmon1./12.*f[7]364 f[5] =f[6]+(fmonf[7])/3.365 f[3] =3./2.*g[2]5./12.*f[1]1./12.*fmon366 f[2] =f[3]+(f[1]fmon)/3.362 f[4] = fmon 363 f[6] = 3./2.*g[3]5./12.*fmon1./12.*f[7] 364 f[5] = f[6]+(fmonf[7])/3. 365 f[3] = 3./2.*g[2]5./12.*f[1]1./12.*fmon 366 f[2] = f[3]+(f[1]fmon)/3. 367 367 368 368 f.extend([0.,0.,0.]) … … 385 385 # apply monotonicity filter for interval before 386 386 # check if there is "M" or "W" shape 387 if np.sign(f[5]f[6]) * np.sign(f[4]f[5]) ==1 \388 and np.sign(f[4]f[5]) * np.sign(f[3]f[4]) ==1 \389 and np.sign(f[3]f[4]) * np.sign(f[2]f[3]) ==1:387 if np.sign(f[5]f[6]) * np.sign(f[4]f[5]) == 1 \ 388 and np.sign(f[4]f[5]) * np.sign(f[3]f[4]) == 1 \ 389 and np.sign(f[3]f[4]) * np.sign(f[2]f[3]) == 1: 390 390 391 391 # the monotonicity filter corrects the value at (fim1) by … … 399 399 # interval boundaries (fi) and (fip2) remains unchanged 400 400 # see Eq. (18) and (19) 401 f[4] =fmon402 f[6] =3./2.*g[3]5./12.*fmon1./12.*f[7]403 f[5] =f[6]+(fmonf[7])/3.404 f[3] =3./2.*g[2]5./12.*f[1]1./12.*fmon405 f[2] =f[3]+(f[1]fmon)/3.401 f[4] = fmon 402 f[6] = 3./2.*g[3]5./12.*fmon1./12.*f[7] 403 f[5] = f[6]+(fmonf[7])/3. 404 f[3] = 3./2.*g[2]5./12.*f[1]1./12.*fmon 405 f[2] = f[3]+(f[1]fmon)/3. 406 406 407 407 # add next interval of interpolated (sub)grid values
Note: See TracChangeset
for help on using the changeset viewer.