1 | !********************************************************************** |
---|
2 | ! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 * |
---|
3 | ! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, * |
---|
4 | ! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann * |
---|
5 | ! * |
---|
6 | ! This file is part of FLEXPART. * |
---|
7 | ! * |
---|
8 | ! FLEXPART is free software: you can redistribute it and/or modify * |
---|
9 | ! it under the terms of the GNU General Public License as published by* |
---|
10 | ! the Free Software Foundation, either version 3 of the License, or * |
---|
11 | ! (at your option) any later version. * |
---|
12 | ! * |
---|
13 | ! FLEXPART is distributed in the hope that it will be useful, * |
---|
14 | ! but WITHOUT ANY WARRANTY; without even the implied warranty of * |
---|
15 | ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
---|
16 | ! GNU General Public License for more details. * |
---|
17 | ! * |
---|
18 | ! You should have received a copy of the GNU General Public License * |
---|
19 | ! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. * |
---|
20 | !********************************************************************** |
---|
21 | |
---|
22 | subroutine timemanager |
---|
23 | |
---|
24 | !***************************************************************************** |
---|
25 | ! * |
---|
26 | ! Handles the computation of trajectories, i.e. determines which * |
---|
27 | ! trajectories have to be computed at what time. * |
---|
28 | ! Manages dry+wet deposition routines, radioactive decay and the computation * |
---|
29 | ! of concentrations. * |
---|
30 | ! * |
---|
31 | ! Author: A. Stohl * |
---|
32 | ! * |
---|
33 | ! 20 May 1996 * |
---|
34 | ! * |
---|
35 | !***************************************************************************** |
---|
36 | ! Changes, Bernd C. Krueger, Feb. 2001: * |
---|
37 | ! Call of convmix when new windfield is read * |
---|
38 | !------------------------------------ * |
---|
39 | ! Changes Petra Seibert, Sept 2002 * |
---|
40 | ! fix wet scavenging problem * |
---|
41 | ! Code may not be correct for decay of deposition! * |
---|
42 | ! Changes Petra Seibert, Nov 2002 * |
---|
43 | ! call convection BEFORE new fields are read in BWD mode * |
---|
44 | ! Changes Caroline Forster, Feb 2005 * |
---|
45 | !new interface between flexpart and convection scheme * |
---|
46 | !Emanuel's latest subroutine convect43c.f is used * |
---|
47 | !***************************************************************************** |
---|
48 | ! * |
---|
49 | ! Variables: * |
---|
50 | ! DEP .true. if either wet or dry deposition is switched on * |
---|
51 | ! decay(maxspec) [1/s] decay constant for radioactive decay * |
---|
52 | ! DRYDEP .true. if dry deposition is switched on * |
---|
53 | ! ideltas [s] modelling period * |
---|
54 | ! itime [s] actual temporal position of calculation * |
---|
55 | ! ldeltat [s] time since computation of radioact. decay of depositions* |
---|
56 | ! loutaver [s] averaging period for concentration calculations * |
---|
57 | ! loutend [s] end of averaging for concentration calculations * |
---|
58 | ! loutnext [s] next time at which output fields shall be centered * |
---|
59 | ! loutsample [s] sampling interval for averaging of concentrations * |
---|
60 | ! loutstart [s] start of averaging for concentration calculations * |
---|
61 | ! loutstep [s] time interval for which concentrations shall be * |
---|
62 | ! calculated * |
---|
63 | ! npoint(maxpart) index, which starting point the trajectory has * |
---|
64 | ! starting positions of trajectories * |
---|
65 | ! nstop serves as indicator for fate of particles * |
---|
66 | ! in the particle loop * |
---|
67 | ! nstop1 serves as indicator for wind fields (see getfields) * |
---|
68 | ! outnum number of samples for each concentration calculation * |
---|
69 | ! outnum number of samples for each concentration calculation * |
---|
70 | ! prob probability of absorption at ground due to dry * |
---|
71 | ! deposition * |
---|
72 | ! WETDEP .true. if wet deposition is switched on * |
---|
73 | ! weight weight for each concentration sample (1/2 or 1) * |
---|
74 | ! uap(maxpart),ucp(maxpart),uzp(maxpart) = random velocities due to * |
---|
75 | ! turbulence * |
---|
76 | ! us(maxpart),vs(maxpart),ws(maxpart) = random velocities due to inter- * |
---|
77 | ! polation * |
---|
78 | ! xtra1(maxpart), ytra1(maxpart), ztra1(maxpart) = * |
---|
79 | ! spatial positions of trajectories * |
---|
80 | ! * |
---|
81 | ! Constants: * |
---|
82 | ! maxpart maximum number of trajectories * |
---|
83 | ! * |
---|
84 | !***************************************************************************** |
---|
85 | |
---|
86 | use unc_mod |
---|
87 | use point_mod |
---|
88 | use xmass_mod |
---|
89 | use flux_mod |
---|
90 | use outg_mod |
---|
91 | use oh_mod |
---|
92 | use par_mod |
---|
93 | use com_mod |
---|
94 | |
---|
95 | implicit none |
---|
96 | |
---|
97 | integer :: j,ks,kp,l,n,itime,nstop,nstop1 |
---|
98 | ! integer :: ksp |
---|
99 | integer :: loutnext,loutstart,loutend |
---|
100 | integer :: ix,jy,ldeltat,itage,nage |
---|
101 | real :: outnum,weight,prob(maxspec) |
---|
102 | real :: uap(maxpart),ucp(maxpart),uzp(maxpart),decfact |
---|
103 | real :: us(maxpart),vs(maxpart),ws(maxpart) |
---|
104 | integer(kind=2) :: cbt(maxpart) |
---|
105 | real :: drydeposit(maxspec),gridtotalunc,wetgridtotalunc |
---|
106 | real :: drygridtotalunc,xold,yold,zold,xmassfract |
---|
107 | !double precision xm(maxspec,maxpointspec_act), |
---|
108 | ! + xm_depw(maxspec,maxpointspec_act), |
---|
109 | ! + xm_depd(maxspec,maxpointspec_act) |
---|
110 | |
---|
111 | |
---|
112 | !open(88,file='TEST.dat') |
---|
113 | |
---|
114 | ! First output for time 0 |
---|
115 | !************************ |
---|
116 | |
---|
117 | loutnext=loutstep/2 |
---|
118 | outnum=0. |
---|
119 | loutstart=loutnext-loutaver/2 |
---|
120 | loutend=loutnext+loutaver/2 |
---|
121 | |
---|
122 | ! open(127,file=path(2)(1:length(2))//'depostat.dat' |
---|
123 | ! + ,form='unformatted') |
---|
124 | !write (*,*) 'writing deposition statistics depostat.dat!' |
---|
125 | |
---|
126 | !********************************************************************** |
---|
127 | ! Loop over the whole modelling period in time steps of mintime seconds |
---|
128 | !********************************************************************** |
---|
129 | |
---|
130 | !write (*,*) 'starting simulation' |
---|
131 | do itime=0,ideltas,lsynctime |
---|
132 | |
---|
133 | |
---|
134 | ! Computation of wet deposition, OH reaction and mass transfer |
---|
135 | ! between two species every lsynctime seconds |
---|
136 | ! maybe wet depo frequency can be relaxed later but better be on safe side |
---|
137 | ! wetdepo must be called BEFORE new fields are read in but should not |
---|
138 | ! be called in the very beginning before any fields are loaded, or |
---|
139 | ! before particles are in the system |
---|
140 | ! Code may not be correct for decay of deposition |
---|
141 | ! changed by Petra Seibert 9/02 |
---|
142 | !******************************************************************** |
---|
143 | |
---|
144 | if (WETDEP .and. itime .ne. 0 .and. numpart .gt. 0) & |
---|
145 | call wetdepo(itime,lsynctime,loutnext) |
---|
146 | |
---|
147 | if (OHREA .and. itime .ne. 0 .and. numpart .gt. 0) & |
---|
148 | call ohreaction(itime,lsynctime,loutnext) |
---|
149 | |
---|
150 | if (ASSSPEC .and. itime .ne. 0 .and. numpart .gt. 0) then |
---|
151 | stop 'associated species not yet implemented!' |
---|
152 | ! call transferspec(itime,lsynctime,loutnext) |
---|
153 | endif |
---|
154 | |
---|
155 | ! compute convection for backward runs |
---|
156 | !************************************* |
---|
157 | |
---|
158 | if ((ldirect.eq.-1).and.(lconvection.eq.1).and.(itime.lt.0)) & |
---|
159 | call convmix(itime) |
---|
160 | |
---|
161 | ! Get necessary wind fields if not available |
---|
162 | !******************************************* |
---|
163 | |
---|
164 | call getfields(itime,nstop1) |
---|
165 | if (nstop1.gt.1) stop 'NO METEO FIELDS AVAILABLE' |
---|
166 | ! Release particles |
---|
167 | !****************** |
---|
168 | |
---|
169 | if (mdomainfill.ge.1) then |
---|
170 | if (itime.eq.0) then |
---|
171 | call init_domainfill |
---|
172 | else |
---|
173 | call boundcond_domainfill(itime,loutend) |
---|
174 | endif |
---|
175 | else |
---|
176 | call releaseparticles(itime) |
---|
177 | endif |
---|
178 | |
---|
179 | |
---|
180 | ! Compute convective mixing for forward runs |
---|
181 | ! for backward runs it is done before next windfield is read in |
---|
182 | !************************************************************** |
---|
183 | |
---|
184 | if ((ldirect.eq.1).and.(lconvection.eq.1)) & |
---|
185 | call convmix(itime) |
---|
186 | |
---|
187 | |
---|
188 | ! If middle of averaging period of output fields is reached, accumulated |
---|
189 | ! deposited mass radioactively decays |
---|
190 | !*********************************************************************** |
---|
191 | |
---|
192 | if (DEP.and.(itime.eq.loutnext).and.(ldirect.gt.0)) then |
---|
193 | do ks=1,nspec |
---|
194 | do kp=1,maxpointspec_act |
---|
195 | if (decay(ks).gt.0.) then |
---|
196 | do nage=1,nageclass |
---|
197 | do l=1,nclassunc |
---|
198 | ! Mother output grid |
---|
199 | do jy=0,numygrid-1 |
---|
200 | do ix=0,numxgrid-1 |
---|
201 | wetgridunc(ix,jy,ks,kp,l,nage)= & |
---|
202 | wetgridunc(ix,jy,ks,kp,l,nage)* & |
---|
203 | exp(-1.*outstep*decay(ks)) |
---|
204 | drygridunc(ix,jy,ks,kp,l,nage)= & |
---|
205 | drygridunc(ix,jy,ks,kp,l,nage)* & |
---|
206 | exp(-1.*outstep*decay(ks)) |
---|
207 | end do |
---|
208 | end do |
---|
209 | ! Nested output grid |
---|
210 | if (nested_output.eq.1) then |
---|
211 | do jy=0,numygridn-1 |
---|
212 | do ix=0,numxgridn-1 |
---|
213 | wetgriduncn(ix,jy,ks,kp,l,nage)= & |
---|
214 | wetgriduncn(ix,jy,ks,kp,l,nage)* & |
---|
215 | exp(-1.*outstep*decay(ks)) |
---|
216 | drygriduncn(ix,jy,ks,kp,l,nage)= & |
---|
217 | drygriduncn(ix,jy,ks,kp,l,nage)* & |
---|
218 | exp(-1.*outstep*decay(ks)) |
---|
219 | end do |
---|
220 | end do |
---|
221 | endif |
---|
222 | end do |
---|
223 | end do |
---|
224 | endif |
---|
225 | end do |
---|
226 | end do |
---|
227 | endif |
---|
228 | |
---|
229 | !!! CHANGE: These lines may be switched on to check the conservation |
---|
230 | !!! of mass within FLEXPART |
---|
231 | ! if (itime.eq.loutnext) then |
---|
232 | ! do 247 ksp=1, nspec |
---|
233 | ! do 247 kp=1, maxpointspec_act |
---|
234 | !47 xm(ksp,kp)=0. |
---|
235 | |
---|
236 | ! do 249 ksp=1, nspec |
---|
237 | ! do 249 j=1,numpart |
---|
238 | ! if (ioutputforeachrelease.eq.1) then |
---|
239 | ! kp=npoint(j) |
---|
240 | ! else |
---|
241 | ! kp=1 |
---|
242 | ! endif |
---|
243 | ! if (itra1(j).eq.itime) then |
---|
244 | ! xm(ksp,kp)=xm(ksp,kp)+xmass1(j,ksp) |
---|
245 | ! write(*,*) 'xmass: ',xmass1(j,ksp),j,ksp,nspec |
---|
246 | ! endif |
---|
247 | !49 continue |
---|
248 | ! do 248 ksp=1,nspec |
---|
249 | ! do 248 kp=1,maxpointspec_act |
---|
250 | ! xm_depw(ksp,kp)=0. |
---|
251 | ! xm_depd(ksp,kp)=0. |
---|
252 | ! do 248 nage=1,nageclass |
---|
253 | ! do 248 ix=0,numxgrid-1 |
---|
254 | ! do 248 jy=0,numygrid-1 |
---|
255 | ! do 248 l=1,nclassunc |
---|
256 | ! xm_depw(ksp,kp)=xm_depw(ksp,kp) |
---|
257 | ! + +wetgridunc(ix,jy,ksp,kp,l,nage) |
---|
258 | !48 xm_depd(ksp,kp)=xm_depd(ksp,kp) |
---|
259 | ! + +drygridunc(ix,jy,ksp,kp,l,nage) |
---|
260 | ! do 246 ksp=1,nspec |
---|
261 | !46 write(88,'(2i10,3e12.3)') |
---|
262 | ! + itime,ksp,(xm(ksp,kp),kp=1,maxpointspec_act), |
---|
263 | ! + (xm_depw(ksp,kp),kp=1,maxpointspec_act), |
---|
264 | ! + (xm_depd(ksp,kp),kp=1,maxpointspec_act) |
---|
265 | ! endif |
---|
266 | !!! CHANGE |
---|
267 | |
---|
268 | |
---|
269 | |
---|
270 | ! Check whether concentrations are to be calculated |
---|
271 | !************************************************** |
---|
272 | |
---|
273 | if ((ldirect*itime.ge.ldirect*loutstart).and. & |
---|
274 | (ldirect*itime.le.ldirect*loutend)) then ! add to grid |
---|
275 | if (mod(itime-loutstart,loutsample).eq.0) then |
---|
276 | |
---|
277 | ! If we are exactly at the start or end of the concentration averaging interval, |
---|
278 | ! give only half the weight to this sample |
---|
279 | !***************************************************************************** |
---|
280 | |
---|
281 | if ((itime.eq.loutstart).or.(itime.eq.loutend)) then |
---|
282 | weight=0.5 |
---|
283 | else |
---|
284 | weight=1.0 |
---|
285 | endif |
---|
286 | outnum=outnum+weight |
---|
287 | call conccalc(itime,weight) |
---|
288 | endif |
---|
289 | |
---|
290 | |
---|
291 | if ((mquasilag.eq.1).and.(itime.eq.(loutstart+loutend)/2)) & |
---|
292 | call partoutput_short(itime) ! dump particle positions in extremely compressed format |
---|
293 | |
---|
294 | |
---|
295 | ! Output and reinitialization of grid |
---|
296 | ! If necessary, first sample of new grid is also taken |
---|
297 | !***************************************************** |
---|
298 | |
---|
299 | if ((itime.eq.loutend).and.(outnum.gt.0.)) then |
---|
300 | if ((iout.le.3.).or.(iout.eq.5)) then |
---|
301 | call concoutput(itime,outnum,gridtotalunc, & |
---|
302 | wetgridtotalunc,drygridtotalunc) |
---|
303 | if (nested_output.eq.1) call concoutput_nest(itime,outnum) |
---|
304 | outnum=0. |
---|
305 | endif |
---|
306 | if ((iout.eq.4).or.(iout.eq.5)) call plumetraj(itime) |
---|
307 | if (iflux.eq.1) call fluxoutput(itime) |
---|
308 | write(*,45) itime,numpart,gridtotalunc,wetgridtotalunc, & |
---|
309 | drygridtotalunc |
---|
310 | 45 format(i9,' SECONDS SIMULATED: ',i8, & |
---|
311 | ' PARTICLES: Uncertainty: ',3f7.3) |
---|
312 | if (ipout.ge.1) call partoutput(itime) ! dump particle positions |
---|
313 | loutnext=loutnext+loutstep |
---|
314 | loutstart=loutnext-loutaver/2 |
---|
315 | loutend=loutnext+loutaver/2 |
---|
316 | if (itime.eq.loutstart) then |
---|
317 | weight=0.5 |
---|
318 | outnum=outnum+weight |
---|
319 | call conccalc(itime,weight) |
---|
320 | endif |
---|
321 | |
---|
322 | |
---|
323 | ! Check, whether particles are to be split: |
---|
324 | ! If so, create new particles and attribute all information from the old |
---|
325 | ! particles also to the new ones; old and new particles both get half the |
---|
326 | ! mass of the old ones |
---|
327 | !************************************************************************ |
---|
328 | |
---|
329 | if (ldirect*itime.ge.ldirect*itsplit) then |
---|
330 | n=numpart |
---|
331 | do j=1,numpart |
---|
332 | if (ldirect*itime.ge.ldirect*itrasplit(j)) then |
---|
333 | if (n.lt.maxpart) then |
---|
334 | n=n+1 |
---|
335 | itrasplit(j)=2*(itrasplit(j)-itramem(j))+itramem(j) |
---|
336 | itrasplit(n)=itrasplit(j) |
---|
337 | itramem(n)=itramem(j) |
---|
338 | itra1(n)=itra1(j) |
---|
339 | idt(n)=idt(j) |
---|
340 | npoint(n)=npoint(j) |
---|
341 | nclass(n)=nclass(j) |
---|
342 | xtra1(n)=xtra1(j) |
---|
343 | ytra1(n)=ytra1(j) |
---|
344 | ztra1(n)=ztra1(j) |
---|
345 | uap(n)=uap(j) |
---|
346 | ucp(n)=ucp(j) |
---|
347 | uzp(n)=uzp(j) |
---|
348 | us(n)=us(j) |
---|
349 | vs(n)=vs(j) |
---|
350 | ws(n)=ws(j) |
---|
351 | cbt(n)=cbt(j) |
---|
352 | do ks=1,nspec |
---|
353 | xmass1(j,ks)=xmass1(j,ks)/2. |
---|
354 | xmass1(n,ks)=xmass1(j,ks) |
---|
355 | end do |
---|
356 | endif |
---|
357 | endif |
---|
358 | end do |
---|
359 | numpart=n |
---|
360 | endif |
---|
361 | endif |
---|
362 | endif |
---|
363 | |
---|
364 | |
---|
365 | if (itime.eq.ideltas) exit ! almost finished |
---|
366 | |
---|
367 | ! Compute interval since radioactive decay of deposited mass was computed |
---|
368 | !************************************************************************ |
---|
369 | |
---|
370 | if (itime.lt.loutnext) then |
---|
371 | ldeltat=itime-(loutnext-loutstep) |
---|
372 | else ! first half of next interval |
---|
373 | ldeltat=itime-loutnext |
---|
374 | endif |
---|
375 | |
---|
376 | |
---|
377 | ! Loop over all particles |
---|
378 | !************************ |
---|
379 | |
---|
380 | do j=1,numpart |
---|
381 | |
---|
382 | |
---|
383 | ! If integration step is due, do it |
---|
384 | !********************************** |
---|
385 | |
---|
386 | if (itra1(j).eq.itime) then |
---|
387 | |
---|
388 | if (ioutputforeachrelease.eq.1) then |
---|
389 | kp=npoint(j) |
---|
390 | else |
---|
391 | kp=1 |
---|
392 | endif |
---|
393 | ! Determine age class of the particle |
---|
394 | itage=abs(itra1(j)-itramem(j)) |
---|
395 | do nage=1,nageclass |
---|
396 | if (itage.lt.lage(nage)) exit |
---|
397 | end do |
---|
398 | |
---|
399 | ! Initialize newly released particle |
---|
400 | !*********************************** |
---|
401 | |
---|
402 | if ((itramem(j).eq.itime).or.(itime.eq.0)) & |
---|
403 | call initialize(itime,idt(j),uap(j),ucp(j),uzp(j), & |
---|
404 | us(j),vs(j),ws(j),xtra1(j),ytra1(j),ztra1(j),cbt(j)) |
---|
405 | |
---|
406 | ! Memorize particle positions |
---|
407 | !**************************** |
---|
408 | |
---|
409 | xold=xtra1(j) |
---|
410 | yold=ytra1(j) |
---|
411 | zold=ztra1(j) |
---|
412 | |
---|
413 | ! Integrate Lagevin equation for lsynctime seconds |
---|
414 | !************************************************* |
---|
415 | |
---|
416 | call advance(itime,npoint(j),idt(j),uap(j),ucp(j),uzp(j), & |
---|
417 | us(j),vs(j),ws(j),nstop,xtra1(j),ytra1(j),ztra1(j),prob, & |
---|
418 | cbt(j)) |
---|
419 | |
---|
420 | ! Calculate the gross fluxes across layer interfaces |
---|
421 | !*************************************************** |
---|
422 | |
---|
423 | if (iflux.eq.1) call calcfluxes(nage,j,xold,yold,zold) |
---|
424 | |
---|
425 | |
---|
426 | ! Determine, when next time step is due |
---|
427 | ! If trajectory is terminated, mark it |
---|
428 | !************************************** |
---|
429 | |
---|
430 | if (nstop.gt.1) then |
---|
431 | if (linit_cond.ge.1) call initial_cond_calc(itime,j) |
---|
432 | itra1(j)=-999999999 |
---|
433 | else |
---|
434 | itra1(j)=itime+lsynctime |
---|
435 | |
---|
436 | |
---|
437 | ! Dry deposition and radioactive decay for each species |
---|
438 | ! Also check maximum (of all species) of initial mass remaining on the particle; |
---|
439 | ! if it is below a threshold value, terminate particle |
---|
440 | !***************************************************************************** |
---|
441 | |
---|
442 | xmassfract=0. |
---|
443 | do ks=1,nspec |
---|
444 | if (decay(ks).gt.0.) then ! radioactive decay |
---|
445 | decfact=exp(-real(abs(lsynctime))*decay(ks)) |
---|
446 | else |
---|
447 | decfact=1. |
---|
448 | endif |
---|
449 | |
---|
450 | if (DRYDEPSPEC(ks)) then ! dry deposition |
---|
451 | drydeposit(ks)=xmass1(j,ks)*prob(ks)*decfact |
---|
452 | xmass1(j,ks)=xmass1(j,ks)*(1.-prob(ks))*decfact |
---|
453 | if (decay(ks).gt.0.) then ! correct for decay (see wetdepo) |
---|
454 | drydeposit(ks)=drydeposit(ks)* & |
---|
455 | exp(real(abs(ldeltat))*decay(ks)) |
---|
456 | endif |
---|
457 | else ! no dry deposition |
---|
458 | xmass1(j,ks)=xmass1(j,ks)*decfact |
---|
459 | endif |
---|
460 | |
---|
461 | |
---|
462 | if (mdomainfill.eq.0) then |
---|
463 | if (xmass(npoint(j),ks).gt.0.) & |
---|
464 | xmassfract=max(xmassfract,real(npart(npoint(j)))* & |
---|
465 | xmass1(j,ks)/xmass(npoint(j),ks)) |
---|
466 | else |
---|
467 | xmassfract=1. |
---|
468 | endif |
---|
469 | end do |
---|
470 | |
---|
471 | if (xmassfract.lt.0.0001) then ! terminate all particles carrying less mass |
---|
472 | itra1(j)=-999999999 |
---|
473 | endif |
---|
474 | |
---|
475 | ! Sabine Eckhardt, June 2008 |
---|
476 | ! don't create depofield for backward runs |
---|
477 | if (DRYDEP.AND.(ldirect.eq.1)) then |
---|
478 | call drydepokernel(nclass(j),drydeposit,real(xtra1(j)), & |
---|
479 | real(ytra1(j)),nage,kp) |
---|
480 | if (nested_output.eq.1) call drydepokernel_nest( & |
---|
481 | nclass(j),drydeposit,real(xtra1(j)),real(ytra1(j)), & |
---|
482 | nage,kp) |
---|
483 | endif |
---|
484 | |
---|
485 | ! Terminate trajectories that are older than maximum allowed age |
---|
486 | !*************************************************************** |
---|
487 | |
---|
488 | if (abs(itra1(j)-itramem(j)).ge.lage(nageclass)) then |
---|
489 | if (linit_cond.ge.1) & |
---|
490 | call initial_cond_calc(itime+lsynctime,j) |
---|
491 | itra1(j)=-999999999 |
---|
492 | endif |
---|
493 | endif |
---|
494 | |
---|
495 | endif |
---|
496 | |
---|
497 | end do |
---|
498 | |
---|
499 | end do |
---|
500 | |
---|
501 | |
---|
502 | ! Complete the calculation of initial conditions for particles not yet terminated |
---|
503 | !***************************************************************************** |
---|
504 | |
---|
505 | do j=1,numpart |
---|
506 | if (linit_cond.ge.1) call initial_cond_calc(itime,j) |
---|
507 | end do |
---|
508 | |
---|
509 | if (ipout.eq.2) call partoutput(itime) ! dump particle positions |
---|
510 | |
---|
511 | if (linit_cond.ge.1) call initial_cond_output(itime) ! dump initial cond. field |
---|
512 | |
---|
513 | close(104) |
---|
514 | |
---|
515 | ! De-allocate memory and end |
---|
516 | !*************************** |
---|
517 | |
---|
518 | if (iflux.eq.1) then |
---|
519 | deallocate(flux) |
---|
520 | endif |
---|
521 | if (OHREA.eqv..TRUE.) then |
---|
522 | deallocate(OH_field,OH_field_height) |
---|
523 | endif |
---|
524 | if (ldirect.gt.0) then |
---|
525 | deallocate(drygridunc,wetgridunc) |
---|
526 | endif |
---|
527 | deallocate(gridunc) |
---|
528 | deallocate(xpoint1,xpoint2,ypoint1,ypoint2,zpoint1,zpoint2,xmass) |
---|
529 | deallocate(ireleasestart,ireleaseend,npart,kindz) |
---|
530 | deallocate(xmasssave) |
---|
531 | if (nested_output.eq.1) then |
---|
532 | deallocate(orooutn, arean, volumen) |
---|
533 | if (ldirect.gt.0) then |
---|
534 | deallocate(griduncn,drygriduncn,wetgriduncn) |
---|
535 | endif |
---|
536 | endif |
---|
537 | deallocate(outheight,outheighthalf) |
---|
538 | deallocate(oroout, area, volume) |
---|
539 | |
---|
540 | end subroutine timemanager |
---|
541 | |
---|