[4] | 1 | !********************************************************************** |
---|
| 2 | ! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 * |
---|
| 3 | ! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, * |
---|
| 4 | ! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann * |
---|
| 5 | ! * |
---|
| 6 | ! This file is part of FLEXPART. * |
---|
| 7 | ! * |
---|
| 8 | ! FLEXPART is free software: you can redistribute it and/or modify * |
---|
| 9 | ! it under the terms of the GNU General Public License as published by* |
---|
| 10 | ! the Free Software Foundation, either version 3 of the License, or * |
---|
| 11 | ! (at your option) any later version. * |
---|
| 12 | ! * |
---|
| 13 | ! FLEXPART is distributed in the hope that it will be useful, * |
---|
| 14 | ! but WITHOUT ANY WARRANTY; without even the implied warranty of * |
---|
| 15 | ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
---|
| 16 | ! GNU General Public License for more details. * |
---|
| 17 | ! * |
---|
| 18 | ! You should have received a copy of the GNU General Public License * |
---|
| 19 | ! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. * |
---|
| 20 | !********************************************************************** |
---|
| 21 | |
---|
| 22 | subroutine advance(itime,nrelpoint,ldt,up,vp,wp, & |
---|
| 23 | usigold,vsigold,wsigold,nstop,xt,yt,zt,prob,icbt) |
---|
| 24 | ! i i i/oi/oi/o |
---|
| 25 | ! i/o i/o i/o o i/oi/oi/o i/o i/o |
---|
| 26 | !***************************************************************************** |
---|
| 27 | ! * |
---|
| 28 | ! Calculation of turbulent particle trajectories utilizing a * |
---|
| 29 | ! zero-acceleration scheme, which is corrected by a numerically more * |
---|
| 30 | ! accurate Petterssen scheme whenever possible. * |
---|
| 31 | ! * |
---|
| 32 | ! Particle positions are read in, incremented, and returned to the calling * |
---|
| 33 | ! program. * |
---|
| 34 | ! * |
---|
| 35 | ! In different regions of the atmosphere (PBL vs. free troposphere), * |
---|
| 36 | ! different parameters are needed for advection, parameterizing turbulent * |
---|
| 37 | ! velocities, etc. For efficiency, different interpolation routines have * |
---|
| 38 | ! been written for these different cases, with the disadvantage that there * |
---|
| 39 | ! exist several routines doing almost the same. They all share the * |
---|
| 40 | ! included file 'interpol_mod'. The following * |
---|
| 41 | ! interpolation routines are used: * |
---|
| 42 | ! * |
---|
| 43 | ! interpol_all(_nests) interpolates everything (called inside the PBL) * |
---|
| 44 | ! interpol_misslev(_nests) if a particle moves vertically in the PBL, * |
---|
| 45 | ! additional parameters are interpolated if it * |
---|
| 46 | ! crosses a model level * |
---|
| 47 | ! interpol_wind(_nests) interpolates the wind and determines the * |
---|
| 48 | ! standard deviation of the wind (called outside * |
---|
| 49 | ! PBL) also interpolates potential vorticity * |
---|
| 50 | ! interpol_wind_short(_nests) only interpolates the wind (needed for the * |
---|
| 51 | ! Petterssen scheme) * |
---|
| 52 | ! interpol_vdep(_nests) interpolates deposition velocities * |
---|
| 53 | ! * |
---|
| 54 | ! * |
---|
| 55 | ! Author: A. Stohl * |
---|
| 56 | ! * |
---|
| 57 | ! 16 December 1997 * |
---|
| 58 | ! * |
---|
| 59 | ! Changes: * |
---|
| 60 | ! * |
---|
| 61 | ! 8 April 2000: Deep convection parameterization * |
---|
| 62 | ! * |
---|
| 63 | ! May 2002: Petterssen scheme introduced * |
---|
| 64 | ! * |
---|
| 65 | !***************************************************************************** |
---|
| 66 | ! * |
---|
| 67 | ! Variables: * |
---|
| 68 | ! icbt 1 if particle not transferred to forbidden state, * |
---|
| 69 | ! else -1 * |
---|
| 70 | ! dawsave accumulated displacement in along-wind direction * |
---|
| 71 | ! dcwsave accumulated displacement in cross-wind direction * |
---|
| 72 | ! dxsave accumulated displacement in longitude * |
---|
| 73 | ! dysave accumulated displacement in latitude * |
---|
| 74 | ! h [m] Mixing height * |
---|
| 75 | ! lwindinterv [s] time interval between two wind fields * |
---|
| 76 | ! itime [s] time at which this subroutine is entered * |
---|
| 77 | ! itimec [s] actual time, which is incremented in this subroutine * |
---|
| 78 | ! href [m] height for which dry deposition velocity is calculated * |
---|
| 79 | ! ladvance [s] Total integration time period * |
---|
| 80 | ! ldirect 1 forward, -1 backward * |
---|
| 81 | ! ldt [s] Time step for the next integration * |
---|
| 82 | ! lsynctime [s] Synchronisation interval of FLEXPART * |
---|
| 83 | ! ngrid index which grid is to be used * |
---|
| 84 | ! nrand index for a variable to be picked from rannumb * |
---|
| 85 | ! nstop if > 1 particle has left domain and must be stopped * |
---|
| 86 | ! prob probability of absorption due to dry deposition * |
---|
| 87 | ! rannumb(maxrand) normally distributed random variables * |
---|
| 88 | ! rhoa air density * |
---|
| 89 | ! rhograd vertical gradient of the air density * |
---|
| 90 | ! up,vp,wp random velocities due to turbulence (along wind, cross * |
---|
| 91 | ! wind, vertical wind * |
---|
| 92 | ! usig,vsig,wsig mesoscale wind fluctuations * |
---|
| 93 | ! usigold,vsigold,wsigold like usig, etc., but for the last time step * |
---|
| 94 | ! vdepo Deposition velocities for all species * |
---|
| 95 | ! xt,yt,zt Particle position * |
---|
| 96 | ! * |
---|
| 97 | !***************************************************************************** |
---|
| 98 | |
---|
| 99 | use point_mod |
---|
| 100 | use par_mod |
---|
| 101 | use com_mod |
---|
| 102 | use interpol_mod |
---|
| 103 | use hanna_mod |
---|
| 104 | use cmapf_mod |
---|
| 105 | |
---|
| 106 | implicit none |
---|
| 107 | |
---|
| 108 | real(kind=dp) :: xt,yt |
---|
| 109 | real :: zt,xts,yts,weight |
---|
| 110 | integer :: itime,itimec,nstop,ldt,i,j,k,nrand,loop,memindnext |
---|
| 111 | integer :: ngr,nix,njy,ks,nsp,nrelpoint |
---|
| 112 | real :: dz,dz1,dz2,xlon,ylat,xpol,ypol,gridsize |
---|
| 113 | real :: ru,rv,rw,dt,ux,vy,cosfact,xtn,ytn,tropop |
---|
| 114 | real :: prob(maxspec),up,vp,wp,dxsave,dysave,dawsave |
---|
| 115 | real :: dcwsave |
---|
| 116 | real :: usigold,vsigold,wsigold,r,rs |
---|
| 117 | real :: uold,vold,wold,vdepo(maxspec) |
---|
| 118 | !real uprof(nzmax),vprof(nzmax),wprof(nzmax) |
---|
| 119 | !real usigprof(nzmax),vsigprof(nzmax),wsigprof(nzmax) |
---|
| 120 | !real rhoprof(nzmax),rhogradprof(nzmax) |
---|
| 121 | real :: rhoa,rhograd,ran3,delz,dtf,rhoaux,dtftlw,uxscale,wpscale |
---|
| 122 | integer(kind=2) :: icbt |
---|
| 123 | real,parameter :: eps=nxmax/3.e5,eps2=1.e-9 |
---|
| 124 | |
---|
| 125 | |
---|
| 126 | !!! CHANGE: TEST OF THE WELL-MIXED CRITERION |
---|
| 127 | ! integer,parameter :: iclass=10 |
---|
| 128 | ! real(kind=dp) :: zacc,tacc,t(iclass),th(0:iclass),hsave |
---|
| 129 | ! logical dump |
---|
| 130 | ! save zacc,tacc,t,th,hsave,dump |
---|
| 131 | !!! CHANGE |
---|
| 132 | |
---|
| 133 | integer :: idummy = -7 |
---|
| 134 | real :: settling = 0. |
---|
| 135 | |
---|
| 136 | |
---|
| 137 | !!! CHANGE: TEST OF THE WELL-MIXED CRITERION |
---|
| 138 | !if (idummy.eq.-7) then |
---|
| 139 | !open(550,file='WELLMIXEDTEST') |
---|
| 140 | !do 17 i=0,iclass |
---|
| 141 | !7 th(i)=real(i)/real(iclass) |
---|
| 142 | !endif |
---|
| 143 | !!! CHANGE |
---|
| 144 | |
---|
| 145 | |
---|
| 146 | nstop=0 |
---|
| 147 | do i=1,nmixz |
---|
| 148 | indzindicator(i)=.true. |
---|
| 149 | end do |
---|
| 150 | |
---|
| 151 | |
---|
| 152 | if (DRYDEP) then ! reset probability for deposition |
---|
| 153 | do ks=1,nspec |
---|
| 154 | depoindicator(ks)=.true. |
---|
| 155 | prob(ks)=0. |
---|
| 156 | end do |
---|
| 157 | endif |
---|
| 158 | |
---|
| 159 | dxsave=0. ! reset position displacements |
---|
| 160 | dysave=0. ! due to mean wind |
---|
| 161 | dawsave=0. ! and turbulent wind |
---|
| 162 | dcwsave=0. |
---|
| 163 | |
---|
| 164 | itimec=itime |
---|
| 165 | |
---|
| 166 | nrand=int(ran3(idummy)*real(maxrand-1))+1 |
---|
| 167 | |
---|
| 168 | |
---|
| 169 | ! Determine whether lat/long grid or polarstereographic projection |
---|
| 170 | ! is to be used |
---|
| 171 | ! Furthermore, determine which nesting level to be used |
---|
| 172 | !***************************************************************** |
---|
| 173 | |
---|
| 174 | if (nglobal.and.(yt.gt.switchnorthg)) then |
---|
| 175 | ngrid=-1 |
---|
| 176 | else if (sglobal.and.(yt.lt.switchsouthg)) then |
---|
| 177 | ngrid=-2 |
---|
| 178 | else |
---|
| 179 | ngrid=0 |
---|
| 180 | do j=numbnests,1,-1 |
---|
| 181 | if ((xt.gt.xln(j)+eps).and.(xt.lt.xrn(j)-eps).and. & |
---|
| 182 | (yt.gt.yln(j)+eps).and.(yt.lt.yrn(j)-eps)) then |
---|
| 183 | ngrid=j |
---|
| 184 | goto 23 |
---|
| 185 | endif |
---|
| 186 | end do |
---|
| 187 | 23 continue |
---|
| 188 | endif |
---|
| 189 | |
---|
| 190 | |
---|
| 191 | !*************************** |
---|
| 192 | ! Interpolate necessary data |
---|
| 193 | !*************************** |
---|
| 194 | |
---|
| 195 | if (abs(itime-memtime(1)).lt.abs(itime-memtime(2))) then |
---|
| 196 | memindnext=1 |
---|
| 197 | else |
---|
| 198 | memindnext=2 |
---|
| 199 | endif |
---|
| 200 | |
---|
| 201 | ! Determine nested grid coordinates |
---|
| 202 | !********************************** |
---|
| 203 | |
---|
| 204 | if (ngrid.gt.0) then |
---|
| 205 | xtn=(xt-xln(ngrid))*xresoln(ngrid) |
---|
| 206 | ytn=(yt-yln(ngrid))*yresoln(ngrid) |
---|
| 207 | ix=int(xtn) |
---|
| 208 | jy=int(ytn) |
---|
| 209 | nix=nint(xtn) |
---|
| 210 | njy=nint(ytn) |
---|
| 211 | else |
---|
| 212 | ix=int(xt) |
---|
| 213 | jy=int(yt) |
---|
| 214 | nix=nint(xt) |
---|
| 215 | njy=nint(yt) |
---|
| 216 | endif |
---|
| 217 | ixp=ix+1 |
---|
| 218 | jyp=jy+1 |
---|
| 219 | |
---|
| 220 | |
---|
| 221 | ! Compute maximum mixing height around particle position |
---|
| 222 | !******************************************************* |
---|
| 223 | |
---|
| 224 | h=0. |
---|
| 225 | if (ngrid.le.0) then |
---|
| 226 | do k=1,2 |
---|
| 227 | do j=jy,jyp |
---|
| 228 | do i=ix,ixp |
---|
| 229 | if (hmix(i,j,1,k).gt.h) h=hmix(i,j,1,k) |
---|
| 230 | end do |
---|
| 231 | end do |
---|
| 232 | end do |
---|
| 233 | tropop=tropopause(nix,njy,1,1) |
---|
| 234 | else |
---|
| 235 | do k=1,2 |
---|
| 236 | do j=jy,jyp |
---|
| 237 | do i=ix,ixp |
---|
| 238 | if (hmixn(i,j,1,k,ngrid).gt.h) h=hmixn(i,j,1,k,ngrid) |
---|
| 239 | end do |
---|
| 240 | end do |
---|
| 241 | end do |
---|
| 242 | tropop=tropopausen(nix,njy,1,1,ngrid) |
---|
| 243 | endif |
---|
| 244 | |
---|
| 245 | zeta=zt/h |
---|
| 246 | |
---|
| 247 | |
---|
| 248 | |
---|
| 249 | !************************************************************* |
---|
| 250 | ! If particle is in the PBL, interpolate once and then make a |
---|
| 251 | ! time loop until end of interval is reached |
---|
| 252 | !************************************************************* |
---|
| 253 | |
---|
| 254 | if (zeta.le.1.) then |
---|
| 255 | |
---|
| 256 | ! BEGIN TIME LOOP |
---|
| 257 | !================ |
---|
| 258 | |
---|
| 259 | loop=0 |
---|
| 260 | 100 loop=loop+1 |
---|
| 261 | if (method.eq.1) then |
---|
| 262 | ldt=min(ldt,abs(lsynctime-itimec+itime)) |
---|
| 263 | itimec=itimec+ldt*ldirect |
---|
| 264 | else |
---|
| 265 | ldt=abs(lsynctime) |
---|
| 266 | itimec=itime+lsynctime |
---|
| 267 | endif |
---|
| 268 | dt=real(ldt) |
---|
| 269 | |
---|
| 270 | zeta=zt/h |
---|
| 271 | |
---|
| 272 | |
---|
| 273 | if (loop.eq.1) then |
---|
| 274 | if (ngrid.le.0) then |
---|
| 275 | xts=real(xt) |
---|
| 276 | yts=real(yt) |
---|
| 277 | call interpol_all(itime,xts,yts,zt) |
---|
| 278 | else |
---|
| 279 | call interpol_all_nests(itime,xtn,ytn,zt) |
---|
| 280 | endif |
---|
| 281 | |
---|
| 282 | else |
---|
| 283 | |
---|
| 284 | |
---|
| 285 | ! Determine the level below the current position for u,v,rho |
---|
| 286 | !*********************************************************** |
---|
| 287 | |
---|
| 288 | do i=2,nz |
---|
| 289 | if (height(i).gt.zt) then |
---|
| 290 | indz=i-1 |
---|
| 291 | indzp=i |
---|
| 292 | goto 6 |
---|
| 293 | endif |
---|
| 294 | end do |
---|
| 295 | 6 continue |
---|
| 296 | |
---|
| 297 | ! If one of the levels necessary is not yet available, |
---|
| 298 | ! calculate it |
---|
| 299 | !***************************************************** |
---|
| 300 | |
---|
| 301 | do i=indz,indzp |
---|
| 302 | if (indzindicator(i)) then |
---|
| 303 | if (ngrid.le.0) then |
---|
| 304 | call interpol_misslev(i) |
---|
| 305 | else |
---|
| 306 | call interpol_misslev_nests(i) |
---|
| 307 | endif |
---|
| 308 | endif |
---|
| 309 | end do |
---|
| 310 | endif |
---|
| 311 | |
---|
| 312 | |
---|
| 313 | ! Vertical interpolation of u,v,w,rho and drhodz |
---|
| 314 | !*********************************************** |
---|
| 315 | |
---|
| 316 | ! Vertical distance to the level below and above current position |
---|
| 317 | ! both in terms of (u,v) and (w) fields |
---|
| 318 | !**************************************************************** |
---|
| 319 | |
---|
| 320 | dz=1./(height(indzp)-height(indz)) |
---|
| 321 | dz1=(zt-height(indz))*dz |
---|
| 322 | dz2=(height(indzp)-zt)*dz |
---|
| 323 | |
---|
| 324 | u=dz1*uprof(indzp)+dz2*uprof(indz) |
---|
| 325 | v=dz1*vprof(indzp)+dz2*vprof(indz) |
---|
| 326 | w=dz1*wprof(indzp)+dz2*wprof(indz) |
---|
| 327 | rhoa=dz1*rhoprof(indzp)+dz2*rhoprof(indz) |
---|
| 328 | rhograd=dz1*rhogradprof(indzp)+dz2*rhogradprof(indz) |
---|
| 329 | |
---|
| 330 | |
---|
| 331 | ! Compute the turbulent disturbances |
---|
| 332 | ! Determine the sigmas and the timescales |
---|
| 333 | !**************************************** |
---|
| 334 | |
---|
| 335 | if (turbswitch) then |
---|
| 336 | call hanna(zt) |
---|
| 337 | else |
---|
| 338 | call hanna1(zt) |
---|
| 339 | endif |
---|
| 340 | |
---|
| 341 | |
---|
| 342 | !***************************************** |
---|
| 343 | ! Determine the new diffusivity velocities |
---|
| 344 | !***************************************** |
---|
| 345 | |
---|
| 346 | ! Horizontal components |
---|
| 347 | !********************** |
---|
| 348 | |
---|
| 349 | if (nrand+1.gt.maxrand) nrand=1 |
---|
| 350 | if (dt/tlu.lt..5) then |
---|
| 351 | up=(1.-dt/tlu)*up+rannumb(nrand)*sigu*sqrt(2.*dt/tlu) |
---|
| 352 | else |
---|
| 353 | ru=exp(-dt/tlu) |
---|
| 354 | up=ru*up+rannumb(nrand)*sigu*sqrt(1.-ru**2) |
---|
| 355 | endif |
---|
| 356 | if (dt/tlv.lt..5) then |
---|
| 357 | vp=(1.-dt/tlv)*vp+rannumb(nrand+1)*sigv*sqrt(2.*dt/tlv) |
---|
| 358 | else |
---|
| 359 | rv=exp(-dt/tlv) |
---|
| 360 | vp=rv*vp+rannumb(nrand+1)*sigv*sqrt(1.-rv**2) |
---|
| 361 | endif |
---|
| 362 | nrand=nrand+2 |
---|
| 363 | |
---|
| 364 | |
---|
| 365 | if (nrand+ifine.gt.maxrand) nrand=1 |
---|
| 366 | rhoaux=rhograd/rhoa |
---|
| 367 | dtf=dt*fine |
---|
| 368 | |
---|
| 369 | dtftlw=dtf/tlw |
---|
| 370 | |
---|
| 371 | ! Loop over ifine short time steps for vertical component |
---|
| 372 | !******************************************************** |
---|
| 373 | |
---|
| 374 | do i=1,ifine |
---|
| 375 | |
---|
| 376 | ! Determine the drift velocity and density correction velocity |
---|
| 377 | !************************************************************* |
---|
| 378 | |
---|
| 379 | if (turbswitch) then |
---|
| 380 | if (dtftlw.lt..5) then |
---|
| 381 | wp=((1.-dtftlw)*wp+rannumb(nrand+i)*sqrt(2.*dtftlw) & |
---|
| 382 | +dtf*(dsigwdz+rhoaux*sigw))*real(icbt) |
---|
| 383 | else |
---|
| 384 | rw=exp(-dtftlw) |
---|
| 385 | wp=(rw*wp+rannumb(nrand+i)*sqrt(1.-rw**2) & |
---|
| 386 | +tlw*(1.-rw)*(dsigwdz+rhoaux*sigw))*real(icbt) |
---|
| 387 | endif |
---|
| 388 | delz=wp*sigw*dtf |
---|
| 389 | else |
---|
| 390 | rw=exp(-dtftlw) |
---|
| 391 | wp=(rw*wp+rannumb(nrand+i)*sqrt(1.-rw**2)*sigw & |
---|
| 392 | +tlw*(1.-rw)*(dsigw2dz+rhoaux*sigw**2))*real(icbt) |
---|
| 393 | delz=wp*dtf |
---|
| 394 | endif |
---|
| 395 | |
---|
| 396 | !**************************************************** |
---|
| 397 | ! Compute turbulent vertical displacement of particle |
---|
| 398 | !**************************************************** |
---|
| 399 | |
---|
| 400 | if (abs(delz).gt.h) delz=mod(delz,h) |
---|
| 401 | |
---|
| 402 | ! Determine if particle transfers to a "forbidden state" below the ground |
---|
| 403 | ! or above the mixing height |
---|
| 404 | !************************************************************************ |
---|
| 405 | |
---|
| 406 | if (delz.lt.-zt) then ! reflection at ground |
---|
| 407 | icbt=-1 |
---|
| 408 | zt=-zt-delz |
---|
| 409 | else if (delz.gt.(h-zt)) then ! reflection at h |
---|
| 410 | icbt=-1 |
---|
| 411 | zt=-zt-delz+2.*h |
---|
| 412 | else ! no reflection |
---|
| 413 | icbt=1 |
---|
| 414 | zt=zt+delz |
---|
| 415 | endif |
---|
| 416 | |
---|
| 417 | if (i.ne.ifine) then |
---|
| 418 | zeta=zt/h |
---|
| 419 | call hanna_short(zt) |
---|
| 420 | endif |
---|
| 421 | |
---|
| 422 | end do |
---|
| 423 | nrand=nrand+i |
---|
| 424 | |
---|
| 425 | ! Determine time step for next integration |
---|
| 426 | !***************************************** |
---|
| 427 | |
---|
| 428 | if (turbswitch) then |
---|
| 429 | ldt=int(min(tlw,h/max(2.*abs(wp*sigw),1.e-5), & |
---|
| 430 | 0.5/abs(dsigwdz))*ctl) |
---|
| 431 | else |
---|
| 432 | ldt=int(min(tlw,h/max(2.*abs(wp),1.e-5))*ctl) |
---|
| 433 | endif |
---|
| 434 | ldt=max(ldt,mintime) |
---|
| 435 | |
---|
| 436 | |
---|
| 437 | ! If particle represents only a single species, add gravitational settling |
---|
| 438 | ! velocity. The settling velocity is zero for gases, or if particle |
---|
| 439 | ! represents more than one species |
---|
| 440 | !************************************************************************* |
---|
| 441 | |
---|
| 442 | if (mdomainfill.eq.0) then |
---|
| 443 | do nsp=1,nspec |
---|
| 444 | if (xmass(nrelpoint,nsp).gt.eps2) goto 887 |
---|
| 445 | end do |
---|
| 446 | 887 nsp=min(nsp,nspec) |
---|
| 447 | !!$ if (density(nsp).gt.0.) & |
---|
| 448 | !!$ call get_settling(itime,xts,yts,zt,nsp,settling) !old |
---|
| 449 | if (density(nsp).gt.0.) & |
---|
| 450 | call get_settling(itime,real(xt),real(yt),zt,nsp,settling) !bugfix |
---|
| 451 | w=w+settling |
---|
| 452 | endif |
---|
| 453 | |
---|
| 454 | ! Horizontal displacements during time step dt are small real values compared |
---|
| 455 | ! to the position; adding the two, would result in large numerical errors. |
---|
| 456 | ! Thus, displacements are accumulated during lsynctime and are added to the |
---|
| 457 | ! position at the end |
---|
| 458 | !**************************************************************************** |
---|
| 459 | |
---|
| 460 | dxsave=dxsave+u*dt |
---|
| 461 | dysave=dysave+v*dt |
---|
| 462 | dawsave=dawsave+up*dt |
---|
| 463 | dcwsave=dcwsave+vp*dt |
---|
| 464 | zt=zt+w*dt*real(ldirect) |
---|
| 465 | |
---|
| 466 | if (zt.gt.h) then |
---|
| 467 | if (itimec.eq.itime+lsynctime) goto 99 |
---|
| 468 | goto 700 ! complete the current interval above PBL |
---|
| 469 | endif |
---|
| 470 | |
---|
| 471 | |
---|
| 472 | !!! CHANGE: TEST OF THE WELL-MIXED CRITERION |
---|
| 473 | !!! These lines may be switched on to test the well-mixed criterion |
---|
| 474 | !if (zt.le.h) then |
---|
| 475 | ! zacc=zacc+zt/h*dt |
---|
| 476 | ! hsave=hsave+h*dt |
---|
| 477 | ! tacc=tacc+dt |
---|
| 478 | ! do 67 i=1,iclass |
---|
| 479 | ! if ((zt/h.gt.th(i-1)).and.(zt/h.le.th(i))) |
---|
| 480 | ! + t(i)=t(i)+dt |
---|
| 481 | !7 continue |
---|
| 482 | !endif |
---|
| 483 | !if ((mod(itime,10800).eq.0).and.dump) then |
---|
| 484 | ! dump=.false. |
---|
| 485 | ! write(550,'(i6,12f10.3)') itime,hsave/tacc,zacc/tacc, |
---|
| 486 | ! + (t(i)/tacc*real(iclass),i=1,iclass) |
---|
| 487 | ! zacc=0. |
---|
| 488 | ! tacc=0. |
---|
| 489 | ! do 68 i=1,iclass |
---|
| 490 | !8 t(i)=0. |
---|
| 491 | ! hsave=0. |
---|
| 492 | !endif |
---|
| 493 | !if (mod(itime,10800).ne.0) dump=.true. |
---|
| 494 | !!! CHANGE |
---|
| 495 | |
---|
| 496 | |
---|
| 497 | ! Determine probability of deposition |
---|
| 498 | !************************************ |
---|
| 499 | |
---|
| 500 | if ((DRYDEP).and.(zt.lt.2.*href)) then |
---|
| 501 | do ks=1,nspec |
---|
| 502 | if (DRYDEPSPEC(ks)) then |
---|
| 503 | if (depoindicator(ks)) then |
---|
| 504 | if (ngrid.le.0) then |
---|
| 505 | call interpol_vdep(ks,vdepo(ks)) |
---|
| 506 | else |
---|
| 507 | call interpol_vdep_nests(ks,vdepo(ks)) |
---|
| 508 | endif |
---|
| 509 | endif |
---|
| 510 | ! correction by Petra Seibert, 10 April 2001 |
---|
| 511 | ! this formulation means that prob(n) = 1 - f(0)*...*f(n) |
---|
| 512 | ! where f(n) is the exponential term |
---|
| 513 | prob(ks)=1.+(prob(ks)-1.)* & |
---|
| 514 | exp(-vdepo(ks)*abs(dt)/(2.*href)) |
---|
| 515 | endif |
---|
| 516 | end do |
---|
| 517 | endif |
---|
| 518 | |
---|
| 519 | if (zt.lt.0.) zt=min(h-eps2,-1.*zt) ! if particle below ground -> reflection |
---|
| 520 | |
---|
| 521 | if (itimec.eq.(itime+lsynctime)) then |
---|
| 522 | usig=0.5*(usigprof(indzp)+usigprof(indz)) |
---|
| 523 | vsig=0.5*(vsigprof(indzp)+vsigprof(indz)) |
---|
| 524 | wsig=0.5*(wsigprof(indzp)+wsigprof(indz)) |
---|
| 525 | goto 99 ! finished |
---|
| 526 | endif |
---|
| 527 | goto 100 |
---|
| 528 | |
---|
| 529 | ! END TIME LOOP |
---|
| 530 | !============== |
---|
| 531 | |
---|
| 532 | |
---|
| 533 | endif |
---|
| 534 | |
---|
| 535 | |
---|
| 536 | |
---|
| 537 | !********************************************************** |
---|
| 538 | ! For all particles that are outside the PBL, make a single |
---|
| 539 | ! time step. Only horizontal turbulent disturbances are |
---|
| 540 | ! calculated. Vertical disturbances are reset. |
---|
| 541 | !********************************************************** |
---|
| 542 | |
---|
| 543 | |
---|
| 544 | ! Interpolate the wind |
---|
| 545 | !********************* |
---|
| 546 | |
---|
| 547 | 700 continue |
---|
| 548 | if (ngrid.le.0) then |
---|
| 549 | xts=real(xt) |
---|
| 550 | yts=real(yt) |
---|
| 551 | call interpol_wind(itime,xts,yts,zt) |
---|
| 552 | else |
---|
| 553 | call interpol_wind_nests(itime,xtn,ytn,zt) |
---|
| 554 | endif |
---|
| 555 | |
---|
| 556 | |
---|
| 557 | ! Compute everything for above the PBL |
---|
| 558 | |
---|
| 559 | ! Assume constant, uncorrelated, turbulent perturbations |
---|
| 560 | ! In the stratosphere, use a small vertical diffusivity d_strat, |
---|
| 561 | ! in the troposphere, use a larger horizontal diffusivity d_trop. |
---|
| 562 | ! Turbulent velocity scales are determined based on sqrt(d_trop/dt) |
---|
| 563 | !****************************************************************** |
---|
| 564 | |
---|
| 565 | ldt=abs(lsynctime-itimec+itime) |
---|
| 566 | dt=real(ldt) |
---|
| 567 | |
---|
| 568 | if (zt.lt.tropop) then ! in the troposphere |
---|
| 569 | uxscale=sqrt(2.*d_trop/dt) |
---|
| 570 | if (nrand+1.gt.maxrand) nrand=1 |
---|
| 571 | ux=rannumb(nrand)*uxscale |
---|
| 572 | vy=rannumb(nrand+1)*uxscale |
---|
| 573 | nrand=nrand+2 |
---|
| 574 | wp=0. |
---|
| 575 | else if (zt.lt.tropop+1000.) then ! just above the tropopause: make transition |
---|
| 576 | weight=(zt-tropop)/1000. |
---|
| 577 | uxscale=sqrt(2.*d_trop/dt*(1.-weight)) |
---|
| 578 | if (nrand+2.gt.maxrand) nrand=1 |
---|
| 579 | ux=rannumb(nrand)*uxscale |
---|
| 580 | vy=rannumb(nrand+1)*uxscale |
---|
| 581 | wpscale=sqrt(2.*d_strat/dt*weight) |
---|
| 582 | wp=rannumb(nrand+2)*wpscale+d_strat/1000. |
---|
| 583 | nrand=nrand+3 |
---|
| 584 | else ! in the stratosphere |
---|
| 585 | if (nrand.gt.maxrand) nrand=1 |
---|
| 586 | ux=0. |
---|
| 587 | vy=0. |
---|
| 588 | wpscale=sqrt(2.*d_strat/dt) |
---|
| 589 | wp=rannumb(nrand)*wpscale |
---|
| 590 | nrand=nrand+1 |
---|
| 591 | endif |
---|
| 592 | |
---|
| 593 | |
---|
| 594 | ! If particle represents only a single species, add gravitational settling |
---|
| 595 | ! velocity. The settling velocity is zero for gases |
---|
| 596 | !************************************************************************* |
---|
| 597 | |
---|
| 598 | |
---|
| 599 | |
---|
| 600 | if (mdomainfill.eq.0) then |
---|
| 601 | do nsp=1,nspec |
---|
| 602 | if (xmass(nrelpoint,nsp).gt.eps2) goto 888 |
---|
| 603 | end do |
---|
| 604 | 888 nsp=min(nsp,nspec) |
---|
| 605 | !!$ if (density(nsp).gt.0.) & |
---|
| 606 | !!$ call get_settling(itime,xts,yts,zt,nsp,settling) !old |
---|
| 607 | if (density(nsp).gt.0.) & |
---|
| 608 | call get_settling(itime,real(xt),real(yt),zt,nsp,settling) !bugfix |
---|
| 609 | w=w+settling |
---|
| 610 | endif |
---|
| 611 | |
---|
| 612 | ! Calculate position at time step itime+lsynctime |
---|
| 613 | !************************************************ |
---|
| 614 | |
---|
| 615 | dxsave=dxsave+(u+ux)*dt |
---|
| 616 | dysave=dysave+(v+vy)*dt |
---|
| 617 | zt=zt+(w+wp)*dt*real(ldirect) |
---|
| 618 | if (zt.lt.0.) zt=min(h-eps2,-1.*zt) ! if particle below ground -> reflection |
---|
| 619 | |
---|
| 620 | 99 continue |
---|
| 621 | |
---|
| 622 | |
---|
| 623 | |
---|
| 624 | !**************************************************************** |
---|
| 625 | ! Add mesoscale random disturbances |
---|
| 626 | ! This is done only once for the whole lsynctime interval to save |
---|
| 627 | ! computation time |
---|
| 628 | !**************************************************************** |
---|
| 629 | |
---|
| 630 | |
---|
| 631 | ! Mesoscale wind velocity fluctuations are obtained by scaling |
---|
| 632 | ! with the standard deviation of the grid-scale winds surrounding |
---|
| 633 | ! the particle location, multiplied by a factor turbmesoscale. |
---|
| 634 | ! The autocorrelation time constant is taken as half the |
---|
| 635 | ! time interval between wind fields |
---|
| 636 | !**************************************************************** |
---|
| 637 | |
---|
| 638 | r=exp(-2.*real(abs(lsynctime))/real(lwindinterv)) |
---|
| 639 | rs=sqrt(1.-r**2) |
---|
| 640 | if (nrand+2.gt.maxrand) nrand=1 |
---|
| 641 | usigold=r*usigold+rs*rannumb(nrand)*usig*turbmesoscale |
---|
| 642 | vsigold=r*vsigold+rs*rannumb(nrand+1)*vsig*turbmesoscale |
---|
| 643 | wsigold=r*wsigold+rs*rannumb(nrand+2)*wsig*turbmesoscale |
---|
| 644 | |
---|
| 645 | dxsave=dxsave+usigold*real(lsynctime) |
---|
| 646 | dysave=dysave+vsigold*real(lsynctime) |
---|
| 647 | |
---|
| 648 | zt=zt+wsigold*real(lsynctime) |
---|
| 649 | if (zt.lt.0.) zt=-1.*zt ! if particle below ground -> refletion |
---|
| 650 | |
---|
| 651 | !************************************************************* |
---|
| 652 | ! Transform along and cross wind components to xy coordinates, |
---|
| 653 | ! add them to u and v, transform u,v to grid units/second |
---|
| 654 | ! and calculate new position |
---|
| 655 | !************************************************************* |
---|
| 656 | |
---|
| 657 | call windalign(dxsave,dysave,dawsave,dcwsave,ux,vy) |
---|
| 658 | dxsave=dxsave+ux |
---|
| 659 | dysave=dysave+vy |
---|
| 660 | if (ngrid.ge.0) then |
---|
| 661 | cosfact=dxconst/cos((yt*dy+ylat0)*pi180) |
---|
| 662 | xt=xt+real(dxsave*cosfact*real(ldirect),kind=dp) |
---|
| 663 | yt=yt+real(dysave*dyconst*real(ldirect),kind=dp) |
---|
| 664 | else if (ngrid.eq.-1) then ! around north pole |
---|
| 665 | xlon=xlon0+xt*dx |
---|
| 666 | ylat=ylat0+yt*dy |
---|
| 667 | call cll2xy(northpolemap,ylat,xlon,xpol,ypol) |
---|
| 668 | gridsize=1000.*cgszll(northpolemap,ylat,xlon) |
---|
| 669 | dxsave=dxsave/gridsize |
---|
| 670 | dysave=dysave/gridsize |
---|
| 671 | xpol=xpol+dxsave*real(ldirect) |
---|
| 672 | ypol=ypol+dysave*real(ldirect) |
---|
| 673 | call cxy2ll(northpolemap,xpol,ypol,ylat,xlon) |
---|
| 674 | xt=(xlon-xlon0)/dx |
---|
| 675 | yt=(ylat-ylat0)/dy |
---|
| 676 | else if (ngrid.eq.-2) then ! around south pole |
---|
| 677 | xlon=xlon0+xt*dx |
---|
| 678 | ylat=ylat0+yt*dy |
---|
| 679 | call cll2xy(southpolemap,ylat,xlon,xpol,ypol) |
---|
| 680 | gridsize=1000.*cgszll(southpolemap,ylat,xlon) |
---|
| 681 | dxsave=dxsave/gridsize |
---|
| 682 | dysave=dysave/gridsize |
---|
| 683 | xpol=xpol+dxsave*real(ldirect) |
---|
| 684 | ypol=ypol+dysave*real(ldirect) |
---|
| 685 | call cxy2ll(southpolemap,xpol,ypol,ylat,xlon) |
---|
| 686 | xt=(xlon-xlon0)/dx |
---|
| 687 | yt=(ylat-ylat0)/dy |
---|
| 688 | endif |
---|
| 689 | |
---|
| 690 | |
---|
| 691 | ! If global data are available, use cyclic boundary condition |
---|
| 692 | !************************************************************ |
---|
| 693 | |
---|
| 694 | if (xglobal) then |
---|
| 695 | if (xt.ge.real(nxmin1)) xt=xt-real(nxmin1) |
---|
| 696 | if (xt.lt.0.) xt=xt+real(nxmin1) |
---|
| 697 | if (xt.le.eps) xt=eps |
---|
| 698 | if (abs(xt-real(nxmin1)).le.eps) xt=real(nxmin1)-eps |
---|
| 699 | endif |
---|
| 700 | |
---|
| 701 | |
---|
| 702 | ! Check position: If trajectory outside model domain, terminate it |
---|
| 703 | !***************************************************************** |
---|
| 704 | |
---|
| 705 | if ((xt.lt.0.).or.(xt.ge.real(nxmin1)).or.(yt.lt.0.).or. & |
---|
| 706 | (yt.ge.real(nymin1))) then |
---|
| 707 | nstop=3 |
---|
| 708 | return |
---|
| 709 | endif |
---|
| 710 | |
---|
| 711 | ! If particle above highest model level, set it back into the domain |
---|
| 712 | !******************************************************************* |
---|
| 713 | |
---|
| 714 | if (zt.ge.height(nz)) zt=height(nz)-100.*eps |
---|
| 715 | |
---|
| 716 | |
---|
| 717 | !************************************************************************ |
---|
| 718 | ! Now we could finish, as this was done in FLEXPART versions up to 4.0. |
---|
| 719 | ! However, truncation errors of the advection can be significantly |
---|
| 720 | ! reduced by doing one iteration of the Petterssen scheme, if this is |
---|
| 721 | ! possible. |
---|
| 722 | ! Note that this is applied only to the grid-scale winds, not to |
---|
| 723 | ! the turbulent winds. |
---|
| 724 | !************************************************************************ |
---|
| 725 | |
---|
| 726 | ! The Petterssen scheme can only applied with long time steps (only then u |
---|
| 727 | ! is the "old" wind as required by the scheme); otherwise do nothing |
---|
| 728 | !************************************************************************* |
---|
| 729 | |
---|
| 730 | if (ldt.ne.abs(lsynctime)) return |
---|
| 731 | |
---|
| 732 | ! The Petterssen scheme can only be applied if the ending time of the time step |
---|
| 733 | ! (itime+ldt*ldirect) is still between the two wind fields held in memory; |
---|
| 734 | ! otherwise do nothing |
---|
| 735 | !****************************************************************************** |
---|
| 736 | |
---|
| 737 | if (abs(itime+ldt*ldirect).gt.abs(memtime(2))) return |
---|
| 738 | |
---|
| 739 | ! Apply it also only if starting and ending point of current time step are on |
---|
| 740 | ! the same grid; otherwise do nothing |
---|
| 741 | !***************************************************************************** |
---|
| 742 | if (nglobal.and.(yt.gt.switchnorthg)) then |
---|
| 743 | ngr=-1 |
---|
| 744 | else if (sglobal.and.(yt.lt.switchsouthg)) then |
---|
| 745 | ngr=-2 |
---|
| 746 | else |
---|
| 747 | ngr=0 |
---|
| 748 | do j=numbnests,1,-1 |
---|
| 749 | if ((xt.gt.xln(j)+eps).and.(xt.lt.xrn(j)-eps).and. & |
---|
| 750 | (yt.gt.yln(j)+eps).and.(yt.lt.yrn(j)-eps)) then |
---|
| 751 | ngr=j |
---|
| 752 | goto 43 |
---|
| 753 | endif |
---|
| 754 | end do |
---|
| 755 | 43 continue |
---|
| 756 | endif |
---|
| 757 | |
---|
| 758 | if (ngr.ne.ngrid) return |
---|
| 759 | |
---|
| 760 | ! Determine nested grid coordinates |
---|
| 761 | !********************************** |
---|
| 762 | |
---|
| 763 | if (ngrid.gt.0) then |
---|
| 764 | xtn=(xt-xln(ngrid))*xresoln(ngrid) |
---|
| 765 | ytn=(yt-yln(ngrid))*yresoln(ngrid) |
---|
| 766 | ix=int(xtn) |
---|
| 767 | jy=int(ytn) |
---|
| 768 | else |
---|
| 769 | ix=int(xt) |
---|
| 770 | jy=int(yt) |
---|
| 771 | endif |
---|
| 772 | ixp=ix+1 |
---|
| 773 | jyp=jy+1 |
---|
| 774 | |
---|
| 775 | |
---|
| 776 | ! Memorize the old wind |
---|
| 777 | !********************** |
---|
| 778 | |
---|
| 779 | uold=u |
---|
| 780 | vold=v |
---|
| 781 | wold=w |
---|
| 782 | |
---|
| 783 | ! Interpolate wind at new position and time |
---|
| 784 | !****************************************** |
---|
| 785 | |
---|
| 786 | if (ngrid.le.0) then |
---|
| 787 | xts=real(xt) |
---|
| 788 | yts=real(yt) |
---|
| 789 | call interpol_wind_short(itime+ldt*ldirect,xts,yts,zt) |
---|
| 790 | else |
---|
| 791 | call interpol_wind_short_nests(itime+ldt*ldirect,xtn,ytn,zt) |
---|
| 792 | endif |
---|
| 793 | |
---|
| 794 | if (mdomainfill.eq.0) then |
---|
| 795 | do nsp=1,nspec |
---|
| 796 | if (xmass(nrelpoint,nsp).gt.eps2) goto 889 |
---|
| 797 | end do |
---|
| 798 | 889 nsp=min(nsp,nspec) |
---|
| 799 | !!$ if (density(nsp).gt.0.) & |
---|
| 800 | !!$ call get_settling(itime+ldt,xts,yts,zt,nsp,settling) !old |
---|
| 801 | if (density(nsp).gt.0.) & |
---|
| 802 | call get_settling(itime+ldt,real(xt),real(yt),zt,nsp,settling) !bugfix |
---|
| 803 | w=w+settling |
---|
| 804 | endif |
---|
| 805 | |
---|
| 806 | |
---|
| 807 | ! Determine the difference vector between new and old wind |
---|
| 808 | ! (use half of it to correct position according to Petterssen) |
---|
| 809 | !************************************************************* |
---|
| 810 | |
---|
| 811 | u=(u-uold)/2. |
---|
| 812 | v=(v-vold)/2. |
---|
| 813 | w=(w-wold)/2. |
---|
| 814 | |
---|
| 815 | |
---|
| 816 | ! Finally, correct the old position |
---|
| 817 | !********************************** |
---|
| 818 | |
---|
| 819 | zt=zt+w*real(ldt*ldirect) |
---|
| 820 | if (zt.lt.0.) zt=min(h-eps2,-1.*zt) ! if particle below ground -> reflection |
---|
| 821 | if (ngrid.ge.0) then |
---|
| 822 | cosfact=dxconst/cos((yt*dy+ylat0)*pi180) |
---|
| 823 | xt=xt+real(u*cosfact*real(ldt*ldirect),kind=dp) |
---|
| 824 | yt=yt+real(v*dyconst*real(ldt*ldirect),kind=dp) |
---|
| 825 | else if (ngrid.eq.-1) then ! around north pole |
---|
| 826 | xlon=xlon0+xt*dx |
---|
| 827 | ylat=ylat0+yt*dy |
---|
| 828 | call cll2xy(northpolemap,ylat,xlon,xpol,ypol) |
---|
| 829 | gridsize=1000.*cgszll(northpolemap,ylat,xlon) |
---|
| 830 | u=u/gridsize |
---|
| 831 | v=v/gridsize |
---|
| 832 | xpol=xpol+u*real(ldt*ldirect) |
---|
| 833 | ypol=ypol+v*real(ldt*ldirect) |
---|
| 834 | call cxy2ll(northpolemap,xpol,ypol,ylat,xlon) |
---|
| 835 | xt=(xlon-xlon0)/dx |
---|
| 836 | yt=(ylat-ylat0)/dy |
---|
| 837 | else if (ngrid.eq.-2) then ! around south pole |
---|
| 838 | xlon=xlon0+xt*dx |
---|
| 839 | ylat=ylat0+yt*dy |
---|
| 840 | call cll2xy(southpolemap,ylat,xlon,xpol,ypol) |
---|
| 841 | gridsize=1000.*cgszll(southpolemap,ylat,xlon) |
---|
| 842 | u=u/gridsize |
---|
| 843 | v=v/gridsize |
---|
| 844 | xpol=xpol+u*real(ldt*ldirect) |
---|
| 845 | ypol=ypol+v*real(ldt*ldirect) |
---|
| 846 | call cxy2ll(southpolemap,xpol,ypol,ylat,xlon) |
---|
| 847 | xt=(xlon-xlon0)/dx |
---|
| 848 | yt=(ylat-ylat0)/dy |
---|
| 849 | endif |
---|
| 850 | |
---|
| 851 | ! If global data are available, use cyclic boundary condition |
---|
| 852 | !************************************************************ |
---|
| 853 | |
---|
| 854 | if (xglobal) then |
---|
| 855 | if (xt.ge.real(nxmin1)) xt=xt-real(nxmin1) |
---|
| 856 | if (xt.lt.0.) xt=xt+real(nxmin1) |
---|
| 857 | if (xt.le.eps) xt=eps |
---|
| 858 | if (abs(xt-real(nxmin1)).le.eps) xt=real(nxmin1)-eps |
---|
| 859 | endif |
---|
| 860 | |
---|
| 861 | ! Check position: If trajectory outside model domain, terminate it |
---|
| 862 | !***************************************************************** |
---|
| 863 | |
---|
| 864 | if ((xt.lt.0.).or.(xt.ge.real(nxmin1)).or.(yt.lt.0.).or. & |
---|
| 865 | (yt.ge.real(nymin1))) then |
---|
| 866 | nstop=3 |
---|
| 867 | return |
---|
| 868 | endif |
---|
| 869 | |
---|
| 870 | ! If particle above highest model level, set it back into the domain |
---|
| 871 | !******************************************************************* |
---|
| 872 | |
---|
| 873 | if (zt.ge.height(nz)) zt=height(nz)-100.*eps |
---|
| 874 | |
---|
| 875 | |
---|
| 876 | end subroutine advance |
---|
| 877 | |
---|